Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Discov ; 4(3)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38737752

RESUMO

Genome-wide association studies (GWAS) have been instrumental in elucidating the genetic architecture of various traits and diseases. Despite the success of GWAS, inherent limitations such as identifying rare and ultra-rare variants, the potential for spurious associations, and in pinpointing causative agents can undermine diagnostic capabilities. This review provides an overview of GWAS and highlights recent advances in genetics that employ a range of methodologies, including Whole Genome Sequencing (WGS), Mendelian Randomization (MR), the Pangenome's high-quality T2T-CHM13 panel, and the Human BioMolecular Atlas Program (HuBMAP), as potential enablers of current and future GWAS research. State of the literature demonstrate the capabilities of these techniques in enhancing the statistical power of GWAS. WGS, with its comprehensive approach, captures the entire genome, surpassing the capabilities of the traditional GWAS technique focused on predefined Single Nucleotide Polymorphism (SNP) sites. The Pangenome's T2T-CHM13 panel, with its holistic approach, aids in the analysis of regions with high sequence identity, such as segmental duplications (SDs). Mendelian Randomization has advanced causative inference, improving clinical diagnostics and facilitating definitive conclusions. Furthermore, spatial biology techniques like HuBMAP, enable 3D molecular mapping of tissues at single-cell resolution, offering insights into pathology of complex traits. This study aims to elucidate and advocate for the increased application of these technologies, highlighting their potential to shape the future of GWAS research.

2.
Sci Rep ; 13(1): 16769, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798313

RESUMO

Cardiovascular disease (CVD) is caused by a multitude of complex and largely heritable conditions. Identifying key genes and understanding their susceptibility to CVD in the human genome can assist in early diagnosis and personalized treatment of the relevant patients. Heart failure (HF) is among those CVD phenotypes that has a high rate of mortality. In this study, we investigated genes primarily associated with HF and other CVDs. Achieving the goals of this study, we built a cohort of thirty-five consented patients, and sequenced their serum-based samples. We have generated and processed whole genome sequence (WGS) data, and performed functional mutation, splice, variant distribution, and divergence analysis to understand the relationships between each mutation type and its impact. Our variant and prevalence analysis found FLNA, CST3, LGALS3, and HBA1 linked to many enrichment pathways. Functional mutation analysis uncovered ACE, MME, LGALS3, NR3C2, PIK3C2A, CALD1, TEK, and TRPV1 to be notable and potentially significant genes. We discovered intron, 5' Flank, 3' UTR, and 3' Flank mutations to be the most common among HF and other CVD genes. Missense mutations were less common among HF and other CVD genes but had more of a functional impact. We reported HBA1, FADD, NPPC, ADRB2, ADBR1, MYH6, and PLN to be consequential based on our divergence analysis.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/complicações , Galectina 3/genética , Hemoglobinas Glicadas , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...