Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39061780

RESUMO

This study employs electrochemical impedance spectroscopy (EIS) to probe the behavior of Tau-441 protein, a key component implicated in Alzheimer's disease. Through meticulous experimentation and analysis, the impedance of Tau-441 protein suspension revealed a conductivity peak value of 1.02 S/m. The study demonstrates a high level of specificity and selectivity, particularly within the challenging nanomolar concentration range. Additionally, the EIS method enabled the prediction of Tau-441 protein's dielectrophoresis (DEP) response and the determination of the associated frequency range of 1 kHz to 1 MHz. These findings contribute to advancing our understanding of the molecular intricacies surrounding Tau-441 and hold promise for unraveling implications related to Alzheimer's disease. This study establishes a robust foundation for future research on neurodegenerative disease and biosciences, offering valuable insights into the electrochemical dynamics of Tau-441 protein.

2.
Materials (Basel) ; 17(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998452

RESUMO

Naphthenic acid corrosion is a well-recognized factor contributing to corrosion in the construction of offshore industry pipelines. To mitigate the corrosive effects, minor quantities of alloying elements are introduced into the steel. This research specifically explores the corrosion effects arising from immersing low-carbon steel, specifically A333 Grade 6, in a naphthenic acid solution. Various weight percentages of niobium were incorporated, and the resulting properties were observed. It was noted that the addition of 2% niobium in low-carbon steel exhibited the least mass loss and a lower corrosion rate after a 12 h immersion in naphthenic acid. Microstructural analysis using scanning electron microscopy (SEM) revealed small white particles, indicating the presence of oil sediment residue, along with corrosion pits. Following the addition of 2% niobium, the occurrence of corrosion pits markedly decreased, and only minor voids were observed. Additionally, the chemical composition analysis using energy-dispersive X-Ray analysis (EDX) showed that the black spot exhibited the highest percentage of carbon, resembling high corrosion attack. Meanwhile, the whitish regions with low carbon content indicated the lowest corrosion attack. The results demonstrated that the addition of 2% niobium yielded optimal properties for justifying corrosion effects. Therefore, low-carbon steel with a 2% niobium addition can be regarded as a superior corrosion-resistant material for offshore platform pipeline applications.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887960

RESUMO

This study investigated the influence of reinforcing 0.50 wt.% of titanium oxide (TiO2) and aluminium oxide (Al2O3) nanoparticles on the wettability performance of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy. The thermal properties of the SAC305 nanocomposite solder are comparable with thos of an SAC305 solder with a peak temperature window within a range of 240 to 250 °C. The wetting behaviour of the non-reinforced and reinforced SAC305 nanocomposite solder was determined and measured using the contact angle and spreading area and the relationships between them were studied. There is an increment in the spreading area (5.6 to 7.32 mm) by 30.71% and a reduction in the contact angle (26.3 to 18.6°) by 14.29% with an increasing reflow time up to 60 s when reinforcing SAC305 solder with 0.50 wt.% of TiO2 and Al2O3 nanoparticles. The SAC305 nanocomposite solder has a better wetting performance compared with the SAC305 solder. As the reflow time increased, the spreading area increased and the contact angle decreased, which restricted intermetallic compound growth and thus improved wettability performance.

4.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340481

RESUMO

We employed dielectrophoresis to a yeast cell suspension containing amyloid-beta proteins (Aß) in a microfluidic environment. The Aß was separated from the cells and characterized using the gradual dissolution of Aß as a function of the applied dielectrophoretic parameters. We established the gradual dissolution of Aß under specific dielectrophoretic parameters. Further, Aß in the fibril form at the tip of the electrode dissolved at high frequency. This was perhaps due to the conductivity of the suspending medium changing according to the frequency, which resulted in a higher temperature at the tips of the electrodes, and consequently in the breakdown of the hydrogen bonds. However, those shaped as spheroidal monomers experienced a delay in the Aß fibril transformation process. Yeast cells exposed to relatively low temperatures at the base of the electrode did not experience a positive or negative change in viability. The DEP microfluidic platform incorporating the integrated microtip electrode array was able to selectively manipulate the yeast cells and dissolve the Aß to a controlled extent. We demonstrate suitable dielectrophoretic parameters to induce such manipulation, which is highly relevant for Aß-related colloidal microfluidic research and could be applied to Alzheimer's research in the future.


Assuntos
Peptídeos beta-Amiloides/isolamento & purificação , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Saccharomyces cerevisiae/química , Eletrodos , Eletroforese/instrumentação , Liofilização , Ligação de Hidrogênio , Cinética , Saccharomyces cerevisiae/citologia , Solubilidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...