Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(1): 85-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092881

RESUMO

Inflammation is characterized by a biphasic cycle consisting initially of a proinflammatory phase that is subsequently resolved by anti-inflammatory processes. Interleukin-1ß (IL-1ß) is a master regulator of proinflammation and is encoded within the same topologically associating domain (TAD) as IL-37, which is an anti-inflammatory cytokine that opposes the function of IL-1ß. Within this TAD, we identified a long noncoding RNA called AMANZI, which negatively regulates IL-1ß expression and trained immunity through the induction of IL37 transcription. We found that the activation of IL37 occurs through the formation of a dynamic long-range chromatin contact that leads to the temporal delay of anti-inflammatory responses. The common variant rs16944 present in AMANZI augments this regulatory circuit, predisposing individuals to enhanced proinflammation or immunosuppression. Our work illuminates a chromatin-mediated biphasic circuit coordinating expression of IL-1ß and IL-37, thereby regulating two functionally opposed states of inflammation from within a single TAD.


Assuntos
Cromatina , Inflamação , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Cromatina/genética , Inflamação/genética , Inflamação/metabolismo , Citocinas , Anti-Inflamatórios , Interleucina-1/metabolismo
2.
Cell Rep Methods ; 3(11): 100640, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37963461

RESUMO

Macrophages provide a first line of defense against invading pathogens, including the leading cause of bacterial mortality, Mycobacterium tuberculosis (Mtb). A challenge for quantitative characterization of host-pathogen processes in differentially polarized primary human monocyte-derived macrophages (MDMs) is their heterogeneous morphology. Here, we describe the use of microfabricated patterns that constrain the size and shape of cells, mimicking the physiological spatial confinement cells experience in tissues, to quantitatively characterize interactions during and after phagocytosis at the single-cell level at high resolution. Comparing pro-inflammatory (M1) and anti-inflammatory (M2) MDMs, we find interferon-γ stimulation increases the phagocytic contraction, while contraction and bacterial uptake decrease following silencing of phagocytosis regulator NHLRC2 or bacterial surface lipid removal. We identify host organelle position alterations within infected MDMs and differences in Mtb subcellular localization in line with M1 and M2 cellular polarity. Our approach can be adapted to study other host-pathogen interactions and coupled with downstream automated analytical approaches.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos , Tuberculose/microbiologia , Fagocitose , Interferon gama
3.
Proc Natl Acad Sci U S A ; 119(37): e2210321119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36001732

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.


Assuntos
COVID-19 , Proteínas de Ligação a DNA , Imunidade Inata , Vírus da Influenza A , Influenza Humana , RNA Longo não Codificante , SARS-CoV-2 , Fatores de Transcrição , COVID-19/genética , COVID-19/imunologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , SARS-CoV-2/imunologia , Fatores de Transcrição/metabolismo
4.
J Cell Sci ; 135(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35833493

RESUMO

Nuclear-encoded mitochondrial protein mRNAs have been found to be localized and locally translated within neuronal processes. However, the mechanism of transport for those mRNAs to distal locations is not fully understood. Here, we describe axonal co-transport of Cox7c with mitochondria. Fractionation analysis and single-molecule fluorescence in situ hybridization (smFISH) assay revealed that endogenous mRNA encoding Cox7c was preferentially associated with mitochondria in a mouse neuronal cell line and within mouse primary motor neuron axons, whereas other mRNAs that do not encode mitochondrial protein were much less associated. Live-cell imaging of MS2-tagged Cox7c mRNA further confirmed the preferential colocalization and co-transport of Cox7c mRNA with mitochondria in motor neuron axons. Intriguingly, the coding region, rather than the 3' untranslated region (UTR), was the key domain for the co-transport. Our results reveal that Cox7c mRNA can be transported with mitochondria along significant distances and that its coding region is a major recognition feature. This is consistent with the idea that mitochondria can play a vital role in spatial regulation of the axonal transcriptome at distant neuronal sites.


Assuntos
Axônios , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias , Regiões 3' não Traduzidas/genética , Animais , Axônios/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Nat Genet ; 54(2): 98-99, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058636
6.
Front Immunol ; 12: 662565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046034

RESUMO

Mammals face and overcome an onslaught of endogenous and exogenous challenges in order to survive. Typical immune cells and barrier cells, such as epithelia, must respond rapidly and effectively to encountered pathogens and aberrant cells to prevent invasion and eliminate pathogenic species before they become overgrown and cause harm. On the other hand, inappropriate initiation and failed termination of immune cell effector function in the absence of pathogens or aberrant tissue gives rise to a number of chronic, auto-immune, and neoplastic diseases. Therefore, the fine control of immune effector functions to provide for a rapid, robust response to challenge is essential. Importantly, immune cells are heterogeneous due to various factors relating to cytokine exposure and cell-cell interaction. For instance, tissue-resident macrophages and T cells are phenotypically, transcriptionally, and functionally distinct from their circulating counterparts. Indeed, even the same cell types in the same environment show distinct transcription patterns at the single cell level due to cellular noise, despite being robust in concert. Additionally, immune cells must remain quiescent in a naive state to avoid autoimmunity or chronic inflammatory states but must respond robustly upon activation regardless of their microenvironment or cellular noise. In recent years, accruing evidence from next-generation sequencing, chromatin capture techniques, and high-resolution imaging has shown that local- and long-range genome architecture plays an important role in coordinating rapid and robust transcriptional responses. Here, we discuss the local- and long-range genome architecture of immune cells and the resultant changes upon pathogen or antigen exposure. Furthermore, we argue that genome structures contribute functionally to rapid and robust responses under noisy and distinct cellular environments and propose a model to explain this phenomenon.


Assuntos
Regulação da Expressão Gênica/imunologia , Genoma/imunologia , Genômica , Imunidade/genética , Animais , Comunicação Celular/imunologia , Citocinas/imunologia , Humanos , Imunidade/imunologia , Camundongos , Fenótipo , Linfócitos T/imunologia
7.
Genome Med ; 13(1): 94, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034819

RESUMO

BACKGROUND: The interleukin (IL)-1 pathway is primarily associated with innate immunological defense and plays a major role in the induction and regulation of inflammation. Both common and rare genetic variation in this pathway underlies various inflammation-mediated diseases, but the role of rare variants relative to common variants in immune response variability in healthy individuals remains unclear. METHODS: We performed molecular inversion probe sequencing on 48 IL-1 pathway-related genes in 463 healthy individuals from the Human Functional Genomics Project. We functionally grouped common and rare variants, over gene, subpathway, and inflammatory levels and performed the Sequence Kernel Association Test to test for association with in vitro stimulation-induced cytokine responses; specifically, IL-1ß and IL-6 cytokine measurements upon stimulations that represent an array of microbial infections: lipopolysaccharide (LPS), phytohaemagglutinin (PHA), Candida albicans (C. albicans), and Staphylococcus aureus (S. aureus). RESULTS: We identified a burden of NCF4 rare variants with PHA-induced IL-6 cytokine and showed that the respective carriers are in the 1% lowest IL-6 producers. Collapsing rare variants in IL-1 subpathway genes produces a bidirectional association with LPS-induced IL-1ß cytokine levels, which is reflected by a significant Spearman correlation. On the inflammatory level, we identified a burden of rare variants in genes encoding for proteins with an anti-inflammatory function with S. aureus-induced IL-6 cytokine. In contrast to these rare variant findings which were based on different types of stimuli, common variant associations were exclusively identified with C. albicans-induced cytokine over various levels of grouping, from the gene, to subpathway, to inflammatory level. CONCLUSIONS: In conclusion, this study shows that functionally grouping common and rare genetic variants enables the elucidation IL-1-mediated biological mechanisms, specifically, for IL-1ß and IL-6 cytokine responses induced by various stimuli. The framework used in this study may allow for the analysis of rare and common genetic variants in a wider variety of (non-immune) complex phenotypes and therefore has the potential to contribute to better understanding of unresolved, complex traits and diseases.


Assuntos
Citocinas/genética , Regulação da Expressão Gênica , Variação Genética , Interleucina-1/genética , Interleucina-1/metabolismo , Transdução de Sinais , Biomarcadores , Citocinas/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata , Imunofenotipagem , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta , Biologia de Sistemas/métodos
8.
Immunity ; 54(1): 32-43, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33220235

RESUMO

The last few years have witnessed an increasing body of evidence that challenges the traditional view that immunological memory is an exclusive trait of the adaptive immune system. Myeloid cells can show increased responsiveness upon subsequent stimulation with the same or a different stimulus, well after the initial challenge. This de facto innate immune memory has been termed "trained immunity" and is involved in infections, vaccination and inflammatory diseases. Trained immunity is based on two main pillars: the epigenetic and metabolic reprogramming of cells. In this review we discuss the latest insights into the epigenetic mechanisms behind the induction of trained immunity, as well as the role of different cellular metabolites and metabolic networks in the induction, regulation and maintenance of trained immunity.


Assuntos
Reprogramação Celular/imunologia , Doenças do Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Redes e Vias Metabólicas/imunologia , Células Mieloides/imunologia , Animais , Epigênese Genética , Humanos , Imunidade Inata , Memória Imunológica
9.
Cell Rep Methods ; 1(5): 100068, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35474672

RESUMO

Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immunolabeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-protein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribution variation, allowing for the characterization of their localization patterns. Furthermore, we show that our method can be applied to physiological systems such as skeletal muscle fibers.


Assuntos
Fibras Musculares Esqueléticas , RNA , RNA/genética , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/genética , Fibras Musculares Esqueléticas/metabolismo , Transporte Proteico
10.
Methods Mol Biol ; 2157: 197-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32820405

RESUMO

The organization of the eukaryotic nucleus facilitates functional chromatin contacts which regulate gene transcription. Despite this being extensively studied through population-based chromatin contact mapping and microscopic observations in single cells, the spatiotemporal dynamics of chromatin behavior have largely remained elusive. The current methods to label and observe specific endogenous genomic loci in living cells have been challenging to implement and too invasive to biological processes. In this protocol, we describe the use of a recently developed DNA labelling strategy (ANCHOR) with CRISPR/Cas9 gene editing, to discreetly label genes for live cell imaging to study chromatin dynamics. Our approach improves on some of the fundamental shortfalls associated with current labelling strategies and has the potential for multiplexed observations.


Assuntos
Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Microscopia/métodos , Edição de Genes/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Reação em Cadeia da Polimerase
11.
Cell Rep ; 33(7): 108387, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207187

RESUMO

The tuberculosis vaccine bacillus Calmette-Guérin (BCG) protects against some heterologous infections, probably via induction of non-specific innate immune memory in monocytes and natural killer (NK) cells, a process known as trained immunity. Recent studies have revealed that the induction of trained immunity is associated with a bias toward granulopoiesis in bone marrow hematopoietic progenitor cells, but it is unknown whether BCG vaccination also leads to functional reprogramming of mature neutrophils. Here, we show that BCG vaccination of healthy humans induces long-lasting changes in neutrophil phenotype, characterized by increased expression of activation markers and antimicrobial function. The enhanced function of human neutrophils persists for at least 3 months after vaccination and is associated with genome-wide epigenetic modifications in trimethylation at histone 3 lysine 4. Functional reprogramming of neutrophils by the induction of trained immunity might offer novel therapeutic strategies in clinical conditions that could benefit from modulation of neutrophil effector function.


Assuntos
Vacina BCG/imunologia , Reprogramação Celular/imunologia , Neutrófilos/efeitos dos fármacos , Imunidade Adaptativa , Adulto , Idoso , Vacina BCG/metabolismo , Feminino , Humanos , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Neutrófilos/metabolismo , Tuberculose/imunologia , Vacinação/métodos
13.
Am J Hum Genet ; 107(5): 802-814, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022222

RESUMO

The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.


Assuntos
Cromossomos Humanos Par 17/química , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/genética , Fatores de Transcrição/genética , Adulto , Sequência de Aminoácidos , Diferenciação Celular , Reprogramação Celular , Criança , Mapeamento Cromossômico , Estudos de Coortes , Elementos Facilitadores Genéticos , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Genes Dominantes , Genoma Humano , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patologia , Diester Fosfórico Hidrolases/metabolismo , Polimorfismo Genético , Cultura Primária de Células , Células Fotorreceptoras Retinianas Cones/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
14.
Front Mol Biosci ; 7: 209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923457

RESUMO

Mammalian cells display a broad spectrum of phenotypes, morphologies, and functional niches within biological systems. Our understanding of mechanisms at the individual cellular level, and how cells function in concert to form tissues, organs and systems, has been greatly facilitated by centuries of extensive work to classify and characterize cell types. Classic histological approaches are now complemented with advanced single-cell sequencing and spatial transcriptomics for cell identity studies. Emerging data suggests that additional levels of information should be considered, including the subcellular spatial distribution of molecules such as RNA and protein, when classifying cells. In this Perspective piece we describe the importance of integrating cell transcriptional state with tissue and subcellular spatial and temporal information for thorough characterization of cell type and state. We refer to recent studies making use of single cell RNA-seq and/or image-based cell characterization, which highlight a need for such in-depth characterization of cell populations. We also describe the advances required in experimental, imaging and analytical methods to address these questions. This Perspective concludes by framing this argument in the context of projects such as the Human Cell Atlas, and related fields of cancer research and developmental biology.

15.
Nat Rev Immunol ; 20(6): 375-388, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32132681

RESUMO

Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed 'trained immunity', a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define 'trained immunity' as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity.


Assuntos
Imunidade Adaptativa/imunologia , Epigênese Genética/imunologia , Doenças do Sistema Imunitário/imunologia , Sistema Imunitário/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Imunidade Adaptativa/genética , Animais , Humanos , Sistema Imunitário/metabolismo , Doenças do Sistema Imunitário/genética , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Memória Imunológica/genética , Inflamação/genética , Inflamação/imunologia
16.
Traffic ; 21(5): 375-385, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32170988

RESUMO

Localization-based super-resolution microscopy relies on the detection of individual molecules cycling between fluorescent and non-fluorescent states. These transitions are commonly regulated by high-intensity illumination, imposing constrains to imaging hardware and producing sample photodamage. Here, we propose single-molecule self-quenching as a mechanism to generate spontaneous photoswitching. To demonstrate this principle, we developed a new class of DNA-based open-source super-resolution probes named super-beacons, with photoswitching kinetics that can be tuned structurally, thermally and chemically. The potential of these probes for live-cell compatible super-resolution microscopy without high-illumination or toxic imaging buffers is revealed by imaging interferon inducible transmembrane proteins (IFITMs) at sub-100 nm resolutions.


Assuntos
Piscadela , DNA , Microscopia de Fluorescência , Corantes Fluorescentes
17.
Curr Opin Cell Biol ; 63: 68-75, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991317

RESUMO

The epigenetic and functional reprogramming of immune genes during induction of trained immunity is accompanied by the metabolic rewiring of cellular state. This memory is induced in the hematopoietic niche and propagated to daughter cells, generating epigenetically and metabolically reprogrammed innate immune cells that are greatly enhanced in their capacity to resolve inflammation. In particular, these cells show accumulation of H3K4me3 and H3K27Ac epigenetic marks on multiple immune gene promoters and associated enhancers. However, the mechanism governing how these epigenetic marks accumulate at discrete immune gene loci has been poorly understood, until now. Here, we discuss some recent advances in the regulation of trained immunity, with a particular focus on the mechanistic role of a novel class of long non-coding RNAs in the establishment of epigenetic marks on trained immune gene promoters.


Assuntos
Epigenômica/métodos , Imunidade Inata/genética , Memória Imunológica/genética , Humanos
18.
Bio Protoc ; 10(11): e3639, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659310

RESUMO

RNA binding proteins (RBPs) interact with cellular mRNAs, controlling various steps throughout the lifetime of these transcripts, including transcription, cellular transport, subcellular localization, translation and degradation. In addition to binding mRNA transcripts, a growing number of RBPs are shown to bind long noncoding RNAs (lncRNAs), controlling key cellular processes, including gene expression and translation of proteins. Current methodologies aimed at identifying and characterizing protein binding partners of specific RNAs of interest typically rely on tagging of the RNA with affinity aptamers, using in vitro transcribed RNA or immobilized oligonucleotides to capture RNA-protein complexes under native conditions. These assays are coupled with mass spectrometry or Western Blot analysis to identify or/and confirm interacting proteins. Here, we describe an alternative approach to identify protein binding partners of mRNAs and large long noncoding RNAs. This approach relies on biochemical pulldown of specific target RNAs and interacting protein partners from cellular lysates coupled with mass spectrometry to identify novel interacting proteins. By using 24-48 ~20 mer biotinylated DNA probes that hybridize to the target RNA, the method ensures high specificity and minimal off target binding. This approach is reproducible and fast and serves as a base for discovery studies to identify proteins that bind to RNAs of interest.

19.
J Clin Invest ; 129(9): 3482-3491, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478909

RESUMO

Vaccine development against tuberculosis (TB) is based on the induction of adaptive immune responses endowed with long-term memory against mycobacterial antigens. Memory B and T cells initiate a rapid and robust immune response upon encounter with Mycobacterium tuberculosis, thus achieving long-lasting protection against infection. Recent studies have shown, however, that innate immune cell populations such as myeloid cells and NK cells also undergo functional adaptation after infection or vaccination, a de facto innate immune memory that is also termed trained immunity. Experimental and epidemiological data have shown that induction of trained immunity contributes to the beneficial heterologous effects of vaccines such as bacille Calmette-Guérin (BCG), the licensed TB vaccine. Moreover, increasing evidence argues that trained immunity also contributes to the anti-TB effects of BCG vaccination. An interaction among immunological signals, metabolic rewiring, and epigenetic reprogramming underlies the molecular mechanisms mediating trained immunity in myeloid cells and their bone marrow progenitors. Future studies are warranted to explore the untapped potential of trained immunity to develop a future generation of TB vaccines that would combine innate and adaptive immune memory induction.


Assuntos
Vacina BCG , Imunidade Inata , Mycobacterium tuberculosis/imunologia , Tuberculose , Vacinação , Vacina BCG/imunologia , Vacina BCG/uso terapêutico , Humanos , Tuberculose/imunologia , Tuberculose/patologia , Tuberculose/prevenção & controle
20.
Front Cell Dev Biol ; 7: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733945

RESUMO

Human innate immune cells exposed to certain infections or stimuli develop enhanced immune responses upon re-infection with a different second stimulus, a process termed trained immunity. Recent studies have revealed that hematopoietic stem cells (HSCs) are integral to trained immune responses as they are able to "remember" transcriptional responses and transmit this state to their progeny to educate them how to respond to future infections. The macrophages that arise from trained HSCs are epigenetically reprogrammed and as a result robustly express immune genes, enhancing their capability to resolve infection. Accumulation of H3K4me3 epigenetic marks on multiple immune gene promoters underlie robust transcriptional responses during trained immune responses. However, the mechanism underpinning how these epigenetic marks accumulate at discrete immune gene loci has been poorly understood. In this review, we discuss the previously unexplored contributions of nuclear architecture and long non-coding RNAs on H3K4me3 promoter priming in trained immunity. Altering the activity of these lncRNAs presents a promising therapeutic approach to achieve immunomodulation in inflammatory disease states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...