Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33731459

RESUMO

Potential mechanisms of poor CD4+ T cell reconstitution after viral suppression with antiretroviral therapy (ART) in HIV disease have been extensively investigated. We recently discovered that anti-CD4 autoantibody plays a role in impaired CD4+ T cell recovery from ART in HIV-infected individuals with viral suppression, which accounts for a mechanism specific for CD4+ T cell depletion. However, the mechanism of pathologic anti-CD4 autoantibody production in treated HIV disease remains unknown. Here we report that seasonal influenza vaccination induced IgG anti-CD4 autoantibodies, predominant IgG3 subclass, in some viral-suppressed ART-treated HIV+ subjects. To explore the mechanism of anti-CD4 antibody production in this population, we performed and analyzed gene profiles in isolated B cells using a gene microarray and plasma 32 cytokines. Notably, both gene expression and multiple cytokine analyses showed pre-vaccination plasma level of IL-23 was the key cytokine linked to IgG anti-CD4 antibody production in response to immunization in vivo Exogenous rIL-23 increased autoreactive IgG binding on CD4+ T cells from HIV+ subjects in vitro Results from this study may reveal a role of IL-23 in anti-CD4 autoantibody production in treated HIV.IMPORTANCEIn our published studies, we determine that pathological anti-CD4 IgGs from immunologic non-responders on virally-suppressive ART (CD4 cell counts < 350 cells/µL) mediated CD4+ T cell death via antibody-mediated cytotoxicity (ADCC), which play a role in poor CD4+ T cell recovery from ART. Up to 25% of HIV-infected individuals are non-responders and demonstrate increased morbidity and mortality. However, the mechanism of anti-CD4 autoantibody production in treated HIV remains unknown. In this study, we report that IL-23 may be the key cytokine to promote anti-CD4 autoantibody production after immunization in ART-treated HIV-infected individuals.

2.
Hum Vaccin Immunother ; 17(1): 124-132, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-32412824

RESUMO

Owing to their increased susceptibility to influenza infection, HIV+ individuals are recommended to receive annual influenza vaccination. However, influenza vaccination induced production of anti-influenza neutralization antibodies (Nab) is successful only in some viral-suppressed antiretroviral therapy (ART) treated HIV+ subjects. Additionally, the mechanism of antibody response induced by influenza vaccine in antiretroviral-treated HIV+ subjects is unclear. In this study, we conducted a cohort study which contains 40 HIV+ ART-treated individuals to whom one dose of seasonal influenza vaccine was administered. Blood samples were collected on day 0, 7, 14, and 28 post-vaccination, and serologic responses were characterized by ELISA and micro-neutralization to measure the total antibodies and Nab against influenza vaccines. Transcriptional profiling of peripheral blood mononuclear cells (PBMCs) and immunological assays was measured. Increased levels of proliferation of CD4+T cells and B cells with their corresponding subtypes were observed in HIV-infected subjects at day 7 (D7) following vaccination compared to pre-vaccination. Moreover, proliferation of CD4+T cells and B cells (D7) was correlated with influenza-specific H1N1 Nab at day 28 (D28). Our study could also demonstrate that apoptosis of CD4+T cells and B cells (D7) were inversely correlated with influenza-specific H1N1 Nab. Based on the Nab response after vaccination to each influenza subtypes (D28), HIV+ subjects were stratified as influenza vaccine responders and influenza vaccine non-responders ("responders" ≥ 4-fold increase from day 0; "non-responders" < 4-fold increase from day 0). A selected list of biological pathways (H1N1and H3N2: olfactory transduction, B: phagosome) enriched with transcripts were significantly altered in (ART) treated HIV+ subjects among Nab production responders. This study demonstrated a more detailed mechanism of immune regulation on influenza induced antibody response and revealed some knowledge regarding bioinformatics of vaccine responders and non-responder in influenza induced antibody production in ART-treated HIV patients.


Assuntos
Infecções por HIV , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Formação de Anticorpos , Estudos de Coortes , Infecções por HIV/complicações , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/prevenção & controle , Leucócitos Mononucleares , Estações do Ano , Vacinação
3.
Medicine (Baltimore) ; 99(42): e22555, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33080690

RESUMO

PURPOSE: To evaluate the incidence risk of programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) inhibitor-related alopecia for cancer patients, the meta-analysis was put into practice. METHOD: The meta-analysis was designed and put into practice according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. RESULTS: After rigorous screening and verification, 22 clinical trials involving PD-1/PD-L1 inhibitors were collected for the final comprehensive analysis. The incidence risk of alopecia for all-grade in the PD-1/PD-L1 group was significantly lower than that in the control chemotherapy group (odds ratio [OR] = 0.01, 95% confidence interval [CI]: [0.01, 0.04], I = 86%, Z = 8.73 [P < .00001]). Similar to the above, the incidence risk of alopecia for grade 3-5 related to PD-1/PD-L1 was obvious lower than the control group (OR = 0.17, 95% CI:[0.05, 0.55], I = 0%, Z = 2.97 [P = .003]). When 7 clinical trials (PD-1/PD-L1 + Chemotherapy vs Chemotherapy) were taken to evaluate the risk of alopecia for all-grade and grade 3-5, no statistically significant results were found. CONCLUSION: The incidence risk of alopecia caused by PD-1/PD-L1 is significantly lower than chemotherapy, and there is no statistical significant evidence that PD-1/PD-L1 combined with chemotherapy would increase the incidence risk of alopecia.


Assuntos
Alopecia/induzido quimicamente , Antineoplásicos Imunológicos/efeitos adversos , Antígeno B7-H1/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Alopecia/epidemiologia , Humanos , Incidência
4.
J Cell Mol Med ; 24(16): 8986-8997, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32656992

RESUMO

This study was performed to characterize the effect of microRNA-101 (miR-101) on the pain hypersensitivity in CCI rat models with the involvement of mitogen-activated protein kinase phosphatase 1 (MKP-1) in spinal cord microglial cells. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in the developed CCI models were determined to assess the hypersensitivity of rats to mechanical stimulation and thermal pain. To assess inflammation, the levels of interleukin (IL)-1ß, IL-6 and tumour necrosis factor-α (TNF-α) in the spinal dorsal horns of CCI rats and lipopolysaccharide (LPS)-activated microglial cells were examined. miR-101 and MKP-1 gain- and loss-of-function experiments were conducted in in vivo and in vitro settings to examine the roles of miR-101 and MKP-1 in CCI hypersensitivity and inflammation. The results showed that miR-101 was highly expressed in the spinal dorsal horn and microglial cells of CCI rat models. Furthermore, overexpression of miR-101 promoted the pain hypersensitivity in CCI rat models by reducing MWT and TWL. The overexpression of miR-101 also promoted inflammation in LPS-exposed microglial cells, as indicated by increased levels of IL-1ß, IL-6 and TNF-α. MiR-101 was shown to target MKP-1, inhibiting its expression. Moreover, miR-101 promoted pain hypersensitivity in CCI rat models by inhibiting MKP-1 expression and activating the mitogen-activated protein kinase (MAPK) signalling pathway. Taken together, miR-101 could potentially promote hypersensitivity and inflammatory response of microglial cells and aggravate neuropathic pain in CCI rat models by inhibiting MKP-1 in the MAPK signalling pathway.


Assuntos
Fosfatase 1 de Especificidade Dupla/metabolismo , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuralgia/metabolismo , Transdução de Sinais/fisiologia , Animais , Constrição , Feminino , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
J Cell Mol Med ; 24(9): 5330-5340, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239627

RESUMO

The use of tourniquet during total knee arthroplasty (TKA) can result in ischaemia/reperfusion injury (IRI). Of interest, microRNAs (miRs) are reported to be involved in various kinds of IRI due to their ability in modulating autophagy. Therefore, the study aimed to investigate the effect of miR-153-3p on autophagy in IRI in vitro and in vivo under sevoflurane preconditioning. In the in vitro model, chondrocytes from naive mice were treated with 0% FBS alone or in combination with sevoflurane. Additionally, in vivo assays were conducted in mouse models with tourniquet-induced IRI after TKA under or without sevoflurane preconditioning. The pathological observation in vivo validated that sevoflurane preconditioning protected the knee joint against IRI. Moreover, miR-153-3p expression was diminished in chondrocytes of the in vitro model and in cartilage tissue of the in vivo model, but its expression was appreciably up-regulated in the presence of sevoflurane preconditioning. Mechanistic study showed that miR-153-3p disrupted the interaction between Bcl-2 and Beclin1 by targeting Bcl-2, thereby facilitating autophagy in chondrocytes under sevoflurane preconditioning. Furthermore, the experiments in human chondrocytes also verified the protective effects of miR-153-3p against IRI were realized through inhibiting Bcl-2. Collectively, miR-153-3p overexpression blocks the interaction between Bcl-2 and Beclin1 via down-regulation of Bcl-2 to promote autophagy of chondrocytes, thus protecting knee joint against IRI after TKA under sevoflurane preconditioning.


Assuntos
Artroplastia do Joelho/efeitos adversos , Autofagia , Precondicionamento Isquêmico , MicroRNAs/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Sevoflurano/uso terapêutico , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína Beclina-1/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Humanos , Masculino , Camundongos , MicroRNAs/genética , Modelos Biológicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Traumatismo por Reperfusão/etiologia , Sevoflurano/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
J Neurochem ; 154(3): 301-315, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32126145

RESUMO

Neuropathic pain is an unfavorable pathological pain, often persistent over time, thus leading to significant impairment of quality of life and public health burden. Notably, microRNAs have been implicated in the pathophysiological process of neuropathic pain. The potential mechanism by which miR-34c-5p functions in neuropathic pain remains unclear. This study aimed to test the hypothesis that miR-34c-5p can modulate neuropathic pain in rat models with chronic constriction injury (CCI) of sciatic nerve, via interaction with the SIRT1/STAT3 signaling pathway SIRT1 was validated as a target gene of miR-34c-5p and could be negatively regulated by miR-34c-5p. We induced miR-34c-5p overexpression/inhibition, SIRT1 knockdown, and STAT3 knockdown in the model rats to assess pain behavior patterns. Meanwhile, dorsal root ganglion (DRG) was transduced with overexpression or knockdown of miR-34c-5p or lipopolysaccharide to induce the production of inflammatory factors. It was observed that miR-34c-5p was up-regulated, and SIRT1 was under-expressed in the DRG neurons of dorsal spinal cords of the CCI rats. Furthermore, the ectopic expression of miR-34c-5p and knockdown of SIRT1 in CCI rats resulted in increased hyperalgesia and inflammation, corresponding to reduced paw withdrawal threshold and paw withdrawal latency, and elevated levels of IL-6, IL-1ß, and TNF-α. More importantly, miR-34c-5p inhibition reduced the hyperalgesia and inflammation by blocking the STAT3 signaling pathway through up-regulation of SIRT1. Conjointly, our results indicated that the down-regulation of miR-34c-5p could potentially provide sustained relief in neuropathic pain by promoting SIRT1 expression through STAT3 signaling pathway inactivation.


Assuntos
Regulação da Expressão Gênica/genética , MicroRNAs/metabolismo , Neuralgia/metabolismo , Fator de Transcrição STAT3/metabolismo , Sirtuína 1/metabolismo , Animais , Constrição Patológica , Modelos Animais de Doenças , Regulação para Baixo , Masculino , MicroRNAs/genética , Neuralgia/genética , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Nervo Isquiático/lesões , Transdução de Sinais/fisiologia , Sirtuína 1/genética
7.
J Cell Biochem ; 121(2): 1452-1462, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31512791

RESUMO

Magnesium (Mg2+ ) has been shown to exert neuroprotective effects against hypoxia. However, it still remains elusive whether Mg2+ protected mouse hippocampal HT22 cells against hypoxia-evoked damages. Therefore, we aimed to investigate the function of Mg2+ and mechanisms associated with microRNA-221 (miR-221). HT22 cells were exposed to 3% O2 for 24 hours to induce hypoxic damages with 21% as a normoxic culture condition. The damages were monitored by viability, migration, and apoptosis of HT22 cells with or without Mg2+ pretreatment. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to examine the alteration of miR-221, miR-210, and miR-17-5p. Transduction was carried out to artificially alter the expression of miR-221 and nerve growth factor (NGF), which was confirmed by qRT-PCR or Western blot assays. To blunt phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor κB (NF-κB), LY294002 (10 µM) and BAY 11-7082 (10 µM) were used. We observed Mg2+ protected HT22 cells against hypoxia-induced damages by upregulating miR-221. Further, miR-221 positively regulated NGF expression. Overexpression of NGF alleviated cell injury, while suppression of NGF aggravated cell injury. Moreover, miR-221 elevated NGF by inducing phosphorylation of regulators in PI3K/AKT and NF-κB transduction cascades and then alleviated cell injury. In conclusion, Mg2+ protected HT22 cells against hypoxia-induced damages by upregulation of miR-221 and NGF. These findings provided insights into the development of improved strategies for clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...