Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850036

RESUMO

Water transportation to developing tissues relies on the structure and function of plant xylem cells. Plant microtubules govern the direction of cellulose microfibrils and guide secondary cell wall formation and morphogenesis. However, the relevance of microtubule-determined xylem wall thickening patterns in plant hydraulic conductivity remains unclear. In the present study, we identified a maize (Zea mays) semi-dominant mutant, designated drought-overly-sensitive1 (ZmDos1), the upper leaves of which wilted even when exposed to well-watered conditions during growth; the wilting phenotype was aggravated by increased temperatures and decreased humidity. Protoxylem vessels in the stem and leaves of the mutant showed altered thickening patterns of the secondary cell wall (from annular to spiral), decreased inner diameters, and limited water transport efficiency. The causal mutation for this phenotype was found to be a G-to-A mutation in the maize gene α-tubulin4, resulting in a single amino acid substitution at position 196 (E196K). Ectopic expression of the mutant α-tubulin4 in Arabidopsis (Arabidopsis thaliana) changed the orientation of microtubule arrays, suggesting a determinant role of this gene in microtubule assembly and secondary cell wall thickening. Our findings suggest that the spiral wall thickenings triggered by the α-tubulin mutation are stretched during organ elongation, causing a smaller inner diameter of the protoxylem vessels and affecting water transport in maize. This study underscores the importance of tubulin-mediated protoxylem wall thickening in regulating plant hydraulics, improves our understanding of the relationships between protoxylem structural features and functions, and offers candidate genes for the genetic enhancement of maize.

2.
New Phytol ; 242(1): 154-169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375601

RESUMO

Phloem sieve elements (PSE), the primary conduits collaborating with neighboring phloem pole pericycle (PPP) cells to facilitate unloading in Arabidopsis roots, undergo a series of developmental stages before achieving maturation and functionality. However, the mechanism that maintains the proper progression of these differentiation stages remains largely unknown. We identified a gain-of-function mutant altered phloem pole pericycle 1 Dominant (app1D), producing a truncated, nuclear-localized active form of NAC with Transmembrane Motif 1-like (NTL9). This mutation leads to ectopic expression of its downstream target CALLOSE SYNTHASE 8 (CalS8), thereby inducing callose accumulation, impeding SE differentiation, impairing phloem transport, and inhibiting root growth. The app1D phenotype could be reproduced by blocking the symplastic channels of cells within APP1 expression domain in wild-type (WT) roots. The WT APP1 is primarily membrane-tethered and dormant in the root meristem cells but entries into the nucleus in several cells in PPP near the unloading region, and this import is inhibited by blocking the symplastic intercellular transport in differentiating SE. Our results suggest a potential maintenance mechanism involving an APP1-CalS8 module, which induces CalS8 expression and modulates symplastic communication, and the proper activation of this module is crucial for the successful differentiation of SE in the Arabidopsis root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glucanos , Glucosiltransferases , Arabidopsis/metabolismo , Floema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
New Phytol ; 241(1): 314-328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865884

RESUMO

Gossypol and the related terpenoids are stored in the pigment gland to protect cotton plants from biotic stresses, but little is known about the synthetic sites of these metabolites. Here, we showed that GoPGF, a key gene regulating gland formation, was expressed in gland cells and roots. The chromatin immunoprecipitation sequencing (ChIP-seq) analysis demonstrated that GoPGF targets GhJUB1 to regulate gland morphogenesis. RNA-sequencing (RNA-seq) showed high accumulation of gossypol biosynthetic genes in gland cells. Moreover, integrated analysis of the ChIP-seq and RNA-seq data revealed that GoPGF binds to the promoter of several gossypol biosynthetic genes. The cotton callus overexpressing GoPGF had dramatically increased the gossypol levels, indicating that GoPGF can directly activate the biosynthesis of gossypol. In addition, the gopgf mutant analysis revealed the existence of both GoPGF-dependent and -independent regulation of gossypol production in cotton roots. Our study revealed that the pigment glands are synthetic sites of gossypol in aerial parts of cotton and that GoPGF plays a dual role in regulating gland morphogenesis and gossypol biosynthesis. The study provides new insights for exploring the complex relationship between glands and the metabolites they store in cotton and other plant species.


Assuntos
Gossipol , Gossipol/metabolismo , Gossypium/genética , Gossypium/metabolismo , Terpenos , Componentes Aéreos da Planta
4.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639010

RESUMO

Chloroplasts of higher plants are semi-autonomous organelles that perform photosynthesis and produce hormones and metabolites. They play crucial roles in plant growth and development. Although many seedling-lethal nuclear genes or regulators required for chloroplast development have been characterized, the understanding of chloroplast development is still limited. Using a genetic screen, we isolated a mutant named ell1, with etiolated leaves and a seedling-lethal phenotype. Analysis by BN-PAGE and transmission electron microscopy revealed drastic morphological defects of chloroplasts in ell1 mutants. Genetic mapping of the mutant gene revealed a single mutation (G-to-A) at the 5' splice site of intron 5 in CRS1, resulting in an exon skipping in CRS1, indicating that this mutation in CRS1 is responsible for the observed phenotype, which was further confirmed by genetic analysis. The incorrectly spliced CRS1 failed to mediate the splicing of atpF intron. Moreover, the quantitative analysis suggested that ZmCRS1 may participate in chloroplast transcription to regulate the development of chloroplast. Taken together, these findings improve our understanding of the ZmCRS1 protein and shed new light on the regulation of chloroplast development in maize.


Assuntos
Cloroplastos/genética , Éxons , Regulação da Expressão Gênica de Plantas , Splicing de RNA , Zea mays/genética , Cloroplastos/ultraestrutura , Clonagem Molecular , Genes de Plantas , Mutação , Fenótipo , Fotossíntese/genética , Desenvolvimento Vegetal
5.
Plant Biotechnol J ; 18(3): 814-828, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31479566

RESUMO

The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton. Here, we sequenced the G. australe genome by integrating PacBio, Illumina short read, BioNano (DLS) and Hi-C technologies, and acquired a high-quality reference genome with a contig N50 of 1.83 Mb and a scaffold N50 of 143.60 Mb. We found that 73.5% of the G. australe genome is composed of various repeat sequences, differing from those of G. arboreum (85.39%), G. hirsutum (69.86%) and G. barbadense (69.83%). The G. australe genome showed closer collinear relationships with the genome of G. arboreum than G. raimondii and has undergone less extensive genome reorganization than the G. arboreum genome. Selection signature and transcriptomics analyses implicated multiple genes in disease resistance responses, including GauCCD7 and GauCBP1, and experiments revealed induction of both genes by Verticillium dahliae and by the plant hormones strigolactone (GR24), salicylic acid (SA) and methyl jasmonate (MeJA). Experiments using a Verticillium-resistant domesticated G. barbadense cultivar confirmed that knockdown of the homologues of these genes caused a significant reduction in resistance against Verticillium dahliae. Moreover, knockdown of a newly identified gland-associated gene GauGRAS1 caused a glandless phenotype in partial tissues using G. australe. The G. australe genome represents a valuable resource for cotton research and distant relative breeding as well as for understanding the evolutionary history of crop genomes.


Assuntos
Resistência à Doença , Gossypium/genética , Austrália , Diploide , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Morfogênese , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...