Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 10: 545, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936862

RESUMO

The emergence of multidrug- and extensively drug-resistant Acinetobacter baumannii has made it difficult to treat and control infections caused by this bacterium. Thus, alternatives to conventional antibiotics for management of severe A. baumannii infections is urgently needed. In our previous study, we found that a capsule depolymerase Dpo48 could strip bacterial capsules, and the non-capsuled A. baumannii were significantly decreased in the presence of serum complement in vitro. Here, we further explored its potential as a therapeutic agent for controlling systemic infections caused by extensively drug-resistant A. baumannii. Prior to mammalian studies, the anti-virulence efficacy of Dpo48 was first tested in a Galleria mellonella infection model. Survival rate of Dpo48-pretreated bacteria or Dpo48 treatment group was significantly increased compared to the infective G. mellonella without treatment. Furthermore, the safety and therapeutic efficacy of Dpo48 to mice were evaluated. The mice treated with Dpo48 displayed normal serum levels of TBIL, AST, ALT, ALP, Cr, BUN and LDH, while no significant histopathology changes were observed in tissues of liver, spleen, lung, and kidney. Treatment with Dpo48 could rescue normal and immunocompromised mice from lethal peritoneal sepsis, with the bacterial counts in blood, liver, spleen, lung, and kidney significantly reduced by 1.4-3.3 log colony-forming units at 4 h posttreatment. Besides, the hemolysis and cytotoxicity assays showed that Dpo48 was non-homolytic to human red blood cells and non-toxic to human lung, liver and kidney cell lines. Overall, the present study demonstrated the promising potential of capsule depolymerases as therapeutic agents to prevent antibiotic-resistant A. baumannii infections.

3.
Virus Genes ; 55(3): 394-405, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30937696

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) infection has imposed a great threat to patients with cystic fibrosis. With the emergence of multidrug-resistant P. aeruginosa, developing an alternative anti-microbial strategy is indispensable and more urgent than ever. In this study, a lytic P. aeruginosa phage was isolated from the sewage of a hospital, and one protein was predicted as the depolymerase-like protein by genomic sequence analysis, it includes two catalytic regions, the Pectate lyase_3 super family and Glycosyl hydrolase_28 super family. Further analysis demonstrated that recombinant depolymerase-like protein degraded P. aeruginosa exopolysaccharide and enhanced bactericidal activity mediated by serum in vitro. Additionally, this protein disrupted host bacterial biofilms. All of these results showed that the phage-derived depolymerase-like protein has the potential to be developed into an anti-microbial agent that targets P. aeruginosa.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções por Pseudomonas/virologia , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia , Resistência a Múltiplos Medicamentos/genética , Humanos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Fagos de Pseudomonas/patogenicidade , Pseudomonas aeruginosa/patogenicidade , Esgotos/microbiologia , Esgotos/virologia
4.
Res Microbiol ; 170(3): 156-164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716390

RESUMO

Klebsiella pneumoniae is one of the major Gram-negative bacterial pathogens causing hospital-acquired multidrug-resistant infections, and the antimicrobial treatment options are scarce. The lack of available antimicrobials has prompted the development of alternative strategies for the treatment of these infections. In this study, a K. pneumoniae bacteriophage (vB_KpnP_IME321) targeting a KN1 capsular type strain, Kp409, was isolated, characterized and sequenced. This bacteriophage has a latent period of 20 min and a burst size of approximately 410 pfu/cell. It contained 49 predicted open reading frames, of which ORF42 was identified as encoding the putative capsule depolymerase. The enzyme expressed and purified in the Escherichia coli BL21 system, namely Dp42, could depolymerize the capsular polysaccharide of Kp409 and form translucent halos on the plates. The phage-encoded depolymerase could increase the inhibitory effect of serum on the growth of bacteria in vitro. Pre-treated with Dp42 rescued 100% of mice following lethal Kp409 challenge, and administration of this enzyme after infection significantly increased survival rates of infected mice in the animal experiment. In conclusion, the phage-encoded depolymerase Dp42 represents a potential alternative strategy for controlling infections mediated by K. pneumoniae expressing the KN1 capsular polysaccharide.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Bacteriófagos/enzimologia , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/uso terapêutico , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/efeitos dos fármacos , Animais , Cápsulas Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Modelos Animais de Doenças , Genoma Viral , Glicosídeo Hidrolases/genética , Camundongos , Fases de Leitura Aberta , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/uso terapêutico , Análise de Sequência de DNA , Análise de Sobrevida
5.
PeerJ ; 7: e6173, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30656071

RESUMO

BACKGROUND: The emergence of multidrug- or extensively drug-resistant Acinetobacter baumannii has made it difficult to treat and control infections caused by this bacterium. It is urgently necessary to search for alternatives to conventional antibiotics for control of severe A. baumannii infections. In recent years, bacteriophages and their derivatives, such as depolymerases, showed great potential as antibacterial or antivirulence agents against bacterial infections. Nonetheless, unlike broad-spectrum bactericidal antibiotics, phage-encoded depolymerase targets only a limited number of bacterial strains. Therefore, identification of novel depolymerases and evaluation of their ability to control A. baumannii infections is important. METHODS: A bacteriophage was isolated from hospital sewage using an extensively drug-resistant A. baumannii strain as the host bacterium, and the phage's plaque morphology and genomic composition were studied. A polysaccharide depolymerase (Dpo48) was expressed and identified, and the effects of pH and temperature on its activity were determined. Besides, a serum killing assay was conducted, and amino acid sequences homologous to those of putative polysaccharide depolymerases were compared. RESULTS: Phage IME200 yielded clear plaques surrounded by enlarged halos, with polysaccharide depolymerase activity against the host bacterium. A tail fiber protein with a Pectate_lyase_3 domain was identified as Dpo48 and characterized . Dpo48 was found to degrade the capsule polysaccharide of the bacterial surface, as revealed by Alcian blue staining. Dpo48 manifested stable activity over a broad range of pH (5.0-9.0) and temperatures (20-70 °C). Results from in vitro serum killing assays indicated that 50% serum was sufficient to cause a five log reduction of overnight enzyme-treated bacteria, with serum complement playing an important role in these killing assays. Moreover, Dpo48 had a spectrum of activity exactly the same as its parental phage IME200, which was active against 10 out of 41 A. baumannii strains. Amino acid sequence alignment showed that the putative tail fiber proteins had a relatively short, highly conserved domain in their N-terminal sequences, but their amino acid sequences containing pectate lyase domains, found in the C-terminal regions, were highly diverse. CONCLUSIONS: Phage-encoded capsule depolymerases may become promising antivirulence agents for preventing and controlling A. baumannii infections.

6.
Genome Announc ; 4(5)2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27789630

RESUMO

A novel lytic Salmonella bacteriophage was isolated by using Klebsiella pneumoniae as host cells. The phage's genome was determined to be 47,564 bp and has the highest similarity to Salmonella phage E1 and Salmonella phage 64795_sal3, with coverages of 61% and 56%, respectively. Here, we announce the phage's complete genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...