Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 5(3): 466-480, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36941450

RESUMO

The sense of taste is an important sentinel governing what should or should not be ingested by an animal, with high pH sensation playing a critical role in food selection. Here we explore the molecular identities of taste receptors detecting the basic pH of food using Drosophila melanogaster as a model. We identify a chloride channel named alkaliphile (Alka), which is both necessary and sufficient for aversive taste responses to basic food. Alka forms a high-pH-gated chloride channel and is specifically expressed in a subset of gustatory receptor neurons (GRNs). Optogenetic activation of alka-expressing GRNs is sufficient to suppress attractive feeding responses to sucrose. Conversely, inactivation of these GRNs causes severe impairments in the aversion to high pH. Altogether, our discovery of Alka as an alkaline taste receptor lays the groundwork for future research on alkaline taste sensation in other animals.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster , Paladar/fisiologia , Canais de Cloreto/genética , Proteínas de Drosophila/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
2.
Adv Sci (Weinh) ; 10(7): e2204140, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638273

RESUMO

Newly originated de novo genes have been linked to the formation and function of the human brain. However, how a specific gene originates from ancestral noncoding DNAs and becomes involved in the preexisting network for functional outcomes remains elusive. Here, a human-specific de novo gene, SP0535, is identified that is preferentially expressed in the ventricular zone of the human fetal brain and plays an important role in cortical development and function. In human embryonic stem cell-derived cortical organoids, knockout of SP0535 compromises their growth and neurogenesis. In SP0535 transgenic (TG) mice, expression of SP0535 induces fetal cortex expansion and sulci and gyri-like structure formation. The progenitors and neurons in the SP0535 TG mouse cortex tend to proliferate and differentiate in ways that are unique to humans. SP0535 TG adult mice also exhibit improved cognitive ability and working memory. Mechanistically, SP0535 interacts with the membrane protein Na+ /K+ ATPase subunit alpha-1 (ATP1A1) and releases Src from the ATP1A1-Src complex, allowing increased level of Src phosphorylation that promotes cell proliferation. Thus, SP0535 is the first proven human-specific de novo gene that promotes cortical expansion and folding, and can function through incorporating into an existing conserved molecular network.


Assuntos
Neurogênese , Neurônios , Camundongos , Animais , Humanos , Camundongos Transgênicos , Neurogênese/genética
3.
Stem Cell Res Ther ; 13(1): 534, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575558

RESUMO

BACKGROUND: Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MECP2), is one of the most prevalent neurodevelopmental disorders in girls. However, the underlying mechanism of MECP2 remains largely unknown and currently there is no effective treatment available for RTT. METHODS: We generated MECP2-KO human embryonic stem cells (hESCs), and differentiated them into neurons and cerebral organoids to investigate phenotypes of MECP2 loss-of-function, potential therapeutic agents, and the underlying mechanism by transcriptome sequencing. RESULTS: We found that MECP2 deletion caused reduced number of hESCs-derived neurons and simplified dendritic morphology. Moreover, MECP2-KO cortical organoids exhibited fewer neural progenitor cells and neurons at day 60. Electrophysiological recordings showed that MECP2 deletion altered synaptic activity in organoids. Transcriptome analysis of organoids identified many genes in the PI3K-AKT pathway downregulated following MECP2 deletion. Treatment with either KW-2449 or VPA, small molecules for the activation of PI3K-AKT signaling pathway, alleviated neuronal deficits and transcriptome changes in MECP2-KO human neuronal models. CONCLUSIONS: These findings suggest that KW-2449 and VPA might be promising drugs for RTT treatment.


Assuntos
Células-Tronco Embrionárias Humanas , Síndrome de Rett , Feminino , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/metabolismo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
4.
EMBO Mol Med ; 14(12): e15795, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36385502

RESUMO

Mutations in AT-rich interactive domain-containing protein 1A (ARID1A) cause Coffin-Siris syndrome (CSS), a rare genetic disorder that results in mild to severe intellectual disabilities. However, the biological role of ARID1A in the brain remains unclear. In this study, we report that the haploinsufficiency of ARID1A in excitatory neurons causes cognitive impairment and defects in hippocampal synaptic transmission and dendritic morphology in mice. Similarly, human embryonic stem cell-derived excitatory neurons with deleted ARID1A exhibit fewer dendritic branches and spines, and abnormal electrophysiological activity. Importantly, supplementation of acetate, an epigenetic metabolite, can ameliorate the morphological and electrophysiological deficits observed in mice with Arid1a haploinsufficiency, as well as in ARID1A-null human excitatory neurons. Mechanistically, transcriptomic and ChIP-seq analyses demonstrate that acetate supplementation can increase the levels of H3K27 acetylation at the promoters of key regulatory genes associated with neural development and synaptic transmission. Collectively, these findings support the essential roles of ARID1A in the excitatory neurons and cognition and suggest that acetate supplementation could be a potential therapeutic intervention for CSS.


Assuntos
Acetatos , Proteínas de Ligação a DNA , Haploinsuficiência , Deficiência Intelectual , Fatores de Transcrição , Animais , Humanos , Camundongos , Acetatos/farmacologia , Acetatos/uso terapêutico , Cognição/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Transcriptoma , Neurônios/efeitos dos fármacos , Deficiência Intelectual/tratamento farmacológico
5.
Mol Psychiatry ; 27(7): 2999-3009, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484239

RESUMO

The embryonic ectoderm development (EED) is a core component of the polycomb-repressive complex 2 (PRC2) whose mutations are linked to neurodevelopmental abnormalities, intellectual disability, and neurodegeneration. Although EED has been extensively studied in neural stem cells and oligodendrocytes, its role in microglia is incompletely understood. Here, we show that microglial EED is essential for synaptic pruning during the postnatal stage of brain development. The absence of microglial EED at early postnatal stages resulted in reduced spines and impaired synapse density in the hippocampus at adulthood, accompanied by upregulated expression of phagocytosis-related genes in microglia. As a result, deletion of microglial Eed impaired hippocampus-dependent learning and memory in mice. These results suggest that microglial EED is critical for normal synaptic and cognitive functions during postnatal development.


Assuntos
Microglia , Células-Tronco Neurais , Animais , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Sinapses/metabolismo
6.
Nat Commun ; 12(1): 3730, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140480

RESUMO

Acid taste, evoked mainly by protons (H+), is a core taste modality for many organisms. The hedonic valence of acid taste is bidirectional: animals prefer slightly but avoid highly acidic foods. However, how animals discriminate low from high acidity remains poorly understood. To explore the taste perception of acid, we use the fruit fly as a model organism. We find that flies employ two competing taste sensory pathways to detect low and high acidity, and the relative degree of activation of each determines either attractive or aversive responses. Moreover, we establish one member of the fly Otopetrin family, Otopetrin-like a (OtopLa), as a proton channel dedicated to the gustatory detection of acid. OtopLa defines a unique subset of gustatory receptor neurons and is selectively required for attractive rather than aversive taste responses. Loss of otopla causes flies to reject normally attractive low-acid foods. Therefore, the identification of OtopLa as a low-acid sensor firmly supports our competition model of acid taste sensation. Altogether, we have discovered a binary acid-sensing mechanism that may be evolutionarily conserved between insects and mammals.


Assuntos
Ácidos/metabolismo , Vias Aferentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Vias Aferentes/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eletrofisiologia , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Malatos/metabolismo , Microscopia Confocal , Mutação , Neurônios/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes , Paladar/fisiologia , Percepção Gustatória/fisiologia
7.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008809

RESUMO

Potassium and nitrogen are essential mineral elements for plant growth and development. The protein kinase LKS1/CIPK23 is involved in both K+ and NH4+ uptake in Arabidopsis root. The transcripts of LKS1 can be induced by low K+ (0.1 mM) and high NH4+ (30 mM); however, the molecular mechanism is still unknown. In this study, we isolated the transcription factor STOP1 that positively regulates LKS1 transcription in Arabidopsis responses to both low-K+ and high-NH4+ stresses. STOP1 proteins can directly bind to the LKS1 promoter, promoting its transcription. The stop1 mutants displayed a leaf chlorosis phenotype similar to lks1 mutant when grown on low-K+ and high-NH4+ medium. On the other hand, STOP1 overexpressing plants exhibited a similar tolerant phenotype to LKS1 overexpressing plants. The transcript level of STOP1 was only upregulated by low K+ rather than high NH4+; however, the accumulation of STOP1 protein in the nucleus was required for the upregulation of LKS1 transcripts in both low-K+ and high-NH4+ responses. Our data demonstrate that STOP1 positively regulates LKS1 transcription under low-K+ and high-NH4+ conditions; therefore, LKS1 promotes K+ uptake and inhibits NH4+ uptake. The STOP1/LKS1 pathway plays crucial roles in K+ and NH4+ homeostasis, which coordinates potassium and nitrogen balance in plants in response to external fluctuating nutrient levels.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Potássio/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Transcrição Gênica , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Mutação/genética , Raízes de Plantas/metabolismo , Potássio/farmacologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos
8.
IBRO Rep ; 9: 138-146, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32775759

RESUMO

5-hydroxytryptamine receptor 5B (5-HT5B) is a gene coding for a G protein-coupled receptor (GPCR) that plays key roles in several neurodevelopmental disorders. Our previous study showed that disruption of 5-HT5B induced by lysine (K)-specific demethylase 6A (Kdm6a, also known as Utx) conditional knockout (cKO) in mouse hippocampus was associated with cognition deficits underlying intellectual disability in Kabuki syndrome (KS), a rare disease associated with multiple congenital and developmental abnormalities, especially neurobehavioral features. Here we show that Utx knockout (KO) in cultured hippocampal neurons leads to impaired neuronal excitability and calcium homeostasis. In addition, we show that 5-HT5B overexpression reverses dysregulation of neuronal excitability, intracellular calcium homeostasis, and long-term potentiation (LTP) in cultured Utx KO hippocampal neurons and hippocampal slices. More importantly, overexpression of 5-HT5B in Utx cKO mice results in reversal of abnormal anxiety-like behaviors and impaired spatial memory ability. Our findings therefore indicate that 5-HT5B, as a downstream target of Utx, functions to modulate electrophysiological outcomes, thereby affecting behavioral activities in KS mouse models.

9.
Exp Neurobiol ; 29(2): 138-149, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32408404

RESUMO

Neuropsychiatric disorders are the leading cause of mental and intellectual disabilities worldwide. Current therapies against neuropsychiatric disorders are very limited, and very little is known about the onset and development of these diseases, and their most effective treatments. MIR137 has been previously identified as a risk gene for the etiology of schizophrenia, bipolar disorder, and autism spectrum disorder. Here we generated a forebrain-specific MIR137 knockout mouse model, and provided evidence that loss of miR-137 resulted in impaired homeostasis of potassium in mouse hippocampal neurons. KCC2, a potassium-chloride co-transporter, was a direct downstream target of miR-137. The KCC2 specific antagonist VU0240551 could balance the current of potassium in miR-137 knockout neurons, and knockdown of KCC2 could ameliorate anxiety-like behavior in MIR137 cKO mice. These data suggest that KCC2 antagonists or knockdown might be beneficial to neuropsychiatric disorders due to the deficiency of miR-137.

10.
Front Mol Neurosci ; 12: 260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736707

RESUMO

Anxiety and depression are major public health concerns worldwide. Although genome-wide association studies have identified several genes robustly associated with susceptibility for these disorders, the molecular and cellular mechanisms associated with anxiety and depression is largely unknown. Reduction of microRNA-137 (miR-137) level has been implicated in the etiology of major depressive disorder. However, little is known about the in vivo impact of the loss of miR-137 on the biology of anxiety and depression. Here, we generated a forebrain-specific miR-137 knockout mouse line, and showed that miR-137 is critical for dendritic and synaptic growth in the forebrain. Mice with miR-137 loss-of-function exhibit anxiety-like behavior, and impaired spatial learning and memory. We then observe an elevated expression of EZH2 in the forebrain of miR-137 knockout mice, and provide direct evidence that knockdown of EZH2 can rescue anxious phenotypes associated with the loss of miR-137. Together our results suggest that loss of miR-137 contributes to the etiology of anxiety, and EZH2 might be a potential therapeutic target for anxiety and depressive phenotypes associated with the dysfunction of miR-137.

11.
Nat Commun ; 10(1): 928, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804331

RESUMO

Dosage of key regulators impinge on developmental disorders such as FOXG1 syndrome. Since neither knock-out nor knock-down strategy assures flexible and precise protein abundance control, to study hypomorphic or haploinsufficiency expression remains challenging. We develop a system in human pluripotent stem cells (hPSCs) using CRISPR/Cas9 and SMASh technology, with which we can target endogenous proteins for precise dosage control in hPSCs and at multiple stages of neural differentiation. We also reveal FOXG1 dose-dependently affect the cellular constitution of human brain, with 60% mildly affect GABAergic interneuron development while 30% thresholds the production of MGE derived neurons. Abnormal interneuron differentiation accounts for various neurological defects such as epilepsy or seizures, which stimulates future innovative cures of FOXG1 syndrome. By means of its robustness and easiness, dosage-control of proteins in hPSCs and their derivatives will update the understanding and treatment of additional diseases caused by abnormal protein dosage.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Humanos , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Células-Tronco Pluripotentes/citologia , Ácido gama-Aminobutírico/metabolismo
12.
Nat Neurosci ; 21(12): 1689-1703, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397325

RESUMO

Genetic analyses have linked microRNA-137 (MIR137) to neuropsychiatric disorders, including schizophrenia and autism spectrum disorder. miR-137 plays important roles in neurogenesis and neuronal maturation, but the impact of miR-137 loss-of-function in vivo remains unclear. Here we show the complete loss of miR-137 in the mouse germline knockout or nervous system knockout (cKO) leads to postnatal lethality, while heterozygous germline knockout and cKO mice remain viable. Partial loss of miR-137 in heterozygous cKO mice results in dysregulated synaptic plasticity, repetitive behavior, and impaired learning and social behavior. Transcriptomic and proteomic analyses revealed that the miR-137 mRNA target, phosphodiesterase 10a (Pde10a), is elevated in heterozygous knockout mice. Treatment with the Pde10a inhibitor papaverine or knockdown of Pde10a ameliorates the deficits observed in the heterozygous cKO mice. Collectively, our results suggest that MIR137 plays essential roles in postnatal neurodevelopment and that dysregulation of miR-137 potentially contributes to neuropsychiatric disorders in humans.


Assuntos
Comportamento Animal/fisiologia , MicroRNAs/genética , Diester Fosfórico Hidrolases/metabolismo , Comportamento Social , Comportamento Estereotipado/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Papaverina/farmacologia , Comportamento Estereotipado/efeitos dos fármacos
13.
Stem Cell Reports ; 11(3): 635-650, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30174316

RESUMO

Differentiation of human pluripotent stem cells (hPSCs) into striatal medium spiny neurons (MSNs) promises a cell-based therapy for Huntington's disease. However, clinical-grade MSNs remain unavailable. Here, we developed a chemical recipe named XLSBA to generate clinical-grade MSNs from embryonic stem cells (ESCs). We introduced the γ-secretase inhibitor DAPT into the recipe to accelerate neural differentiation, and replaced protein components with small molecules. Using this optimized protocol we could efficiently direct regular human ESCs (hESCs) as well as clinical-grade hESCs to lateral ganglionic eminence (LGE)-like progenitors and striatal MSNs within less than half of the time than previous protocols (within 14 days and 21 days, respectively). These striatal cells expressed appropriate MSN markers and electrophysiologically acted like authentic MSNs. Upon transplantation into brains of neonatal mice or mouse model of Huntington's disease, they exhibited sufficient safety and reasonable efficacy. Therefore, this quick and highly efficient derivation of MSNs offers unprecedented access to clinical application.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Corpo Estriado/citologia , Diaminas/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Tiazóis/farmacologia , Animais , Linhagem Celular , Técnicas de Cocultura/métodos , Humanos , Doença de Huntington/terapia , Camundongos , Camundongos SCID , Neurônios/transplante
14.
Cell Death Dis ; 9(7): 719, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915260

RESUMO

Japanese encephalitis (JE) caused by Japanese encephalitis virus (JEV) poses a serious threat to the world's public health yet without a cure. Certain JEV-infected neural cells express a subset of previously identified intrinsic antiviral interferon stimulated genes (ISGs), indicating brain cells retain autonomous antiviral immunity. However, whether this happens in composited brain remains unclear. Human pluripotent stem cell (hPSC)-derived organoids can model disorders caused by human endemic pathogens such as Zika virus, which may potentially address this question and facilitate the discovery of a cure for JE. We thus generated telencephalon organoid and infected them with JEV. We found JEV infection caused significant decline of cell proliferation and increase of cell death in brain organoid, resulting in smaller organoid spheres. JEV tended to infect astrocytes and neural progenitors, especially the population representing outer radial glial cells (oRGCs) of developing human brain. In addition, we revealed variable antiviral immunity in brain organoids of different stages of culture. In organoids of longer culture (older than 8 weeks), but not of early ones (less than 4 weeks), JEV infection caused typical activation of interferon signaling pathway. Preferential infection of oRGCs and differential antiviral response at various stages might explain the much more severe outcomes of JEV infection in the younger, which also provide clues to develop effective therapeutics of such diseases.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/imunologia , Organoides/imunologia , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/imunologia , Imunidade Adaptativa/fisiologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/virologia , Células Cultivadas , Cricetinae , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Humanos , Neurogênese/fisiologia , Organoides/citologia , Organoides/crescimento & desenvolvimento , Organoides/virologia , Telencéfalo/citologia , Telencéfalo/virologia
15.
Front Mol Neurosci ; 10: 267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970783

RESUMO

Histone demethylase UTX mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish a mechanistic switch to activate large sets of genes. Mutation of Utx has recently been shown to be associated with Kabuki syndrome, a rare congenital anomaly syndrome with dementia. However, its biological function in the brain is largely unknown. Here, we observe that deletion of Utx results in increased anxiety-like behaviors and impaired spatial learning and memory in mice. Loss of Utx in the hippocampus leads to reduced long-term potentiation and amplitude of miniature excitatory postsynaptic current, aberrant dendrite development and defective synapse formation. Transcriptional profiling reveals that Utx regulates a subset of genes that are involved in the regulation of dendritic morphology, synaptic transmission, and cognition. Specifically, Utx deletion disrupts expression of neurotransmitter 5-hydroxytryptamine receptor 5B (Htr5b). Restoration of Htr5b expression in newborn hippocampal neurons rescues the defects of neuronal morphology by Utx ablation. Therefore, we provide evidence that Utx plays a critical role in modulating synaptic transmission and cognitive behaviors. Utx cKO mouse models like ours provide a valuable means to study the underlying mechanisms of the etiology of Kabuki syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...