Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 25(6): 783-795, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30779332

RESUMO

AIM: Multiple sclerosis (MS) is a relapsing-remitting inflammatory demyelinating disease that requires long-term treatment. Although Rho kinase inhibitor Fasudil shows good therapeutic effect in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, certain side effects may limit its clinical use. This study aimed at observing the therapeutic potential of Fasudil-modified encephalitogenic mononuclear cells (MNCs) via nasal delivery in EAE and exploring possible mechanisms of action. METHODS: Experimental autoimmune encephalomyelitis was induced with myelin oligodendrocyte glycoprotein 35-55 in C57BL/6 mice, and encephalitogenic MNCs were treated with Fasudil in vitro. Mice received 3 × 106  cells/10 µL per nasal cavity on day 3 and 11 postimmunization, respectively. RESULTS: Fasudil-modified MNCs reduced clinical severity of EAE, improved demyelination, and decreased inflammatory cells in spinal cords. Immunohistochemical results indicated that CD4+ T cells and CD68+ macrophages were barely detected in Fasudil-MNCs group. Fasudil-modified MNCs decreased CD4+ IFN-γ+ and CD4+ IL-17+ T cells, increased CD4+ IL-10+ T cells, restrained M1 markers CD16/32, CCR7, IL-12, CD8a, enhanced M2 markers CD206, CD200, CD14 in spleen. Fasudil-modified MNCs inhibited the activation of inflammatory signaling p-NF-kB/P38, accompanied by the decrease of COX-2 and the increase of Arg-1 in spinal cord, as well as the reduction of IL-17, TNF-α, IL-6 and the elevation of IL-10 in cultured supernatant of splenocytes. Fasudil-modified MNCs enhanced the levels of neurotrophic factors BDNF and NT-3 in spinal cord. CONCLUSION: Our results indicate that intranasal delivery of Fasudil-modified MNCs have therapeutic potential in EAE, providing a safe and effective cell therapeutic strategy to MS and/or other related disorders.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Encefalomielite Autoimune Experimental/terapia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Administração Intranasal , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/transplante , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Inibidores de Proteínas Quinases/farmacologia , Medula Espinal/metabolismo , Medula Espinal/patologia
2.
Phys Chem Chem Phys ; 19(8): 5855-5860, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28176992

RESUMO

Gas diffusion in porous media consists of surface hopping and non-surface ballistic/bulk diffusion. Unfortunately, only the overall diffusivity is usually measured, without being separated into various diffusion modes. Here, we report a numerical method to differentiate contributions from surface diffusion and non-surface diffusion for argon diffusion in nanoporous carbon using molecular dynamics simulations. The key is to truncate the argon trajectories based on the adsorption/desorption state, and thus attribute mass fluxes according to specific mechanisms during diffusion. Both the surface diffusivity and non-surface diffusivity increase and then decrease as a function of gas loading. Yet, surface diffusivity and non-surface diffusivity behave very differently as a function of the temperature and gas-substrate affinity of the nanoporous network.

3.
ACS Nano ; 7(4): 3512-21, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23484526

RESUMO

Previous studies of the interaction of water with graphene-coated surfaces have been limited to flat (smooth) surfaces. Here we created a rough surface by nanopatterning and then draped the surface with a single-layer graphene sheet. We found that the ultrasheer graphene drape prevents the penetration of water into the textured surface thereby drastically reducing the contact angle hysteresis (which is a measure of frictional energy dissipation) and preventing the liquid contact line from getting pinned to the substrate. This has important technological implications since the main obstacle to the motion of liquid drops on rough surfaces is contact angle hysteresis and contact line pinning. Graphene drapes could therefore enable enhanced droplet mobility which is required in a wide range of applications in micro and nanofluidics. Compared to polymer coatings that could fill the cavities between the nano/micropores or significantly alter the roughness profile of the substrate, graphene provides the thinnest (i.e., most sheer) and most conformal drape that is imaginable. Despite its extreme thinness, the graphene drape is mechanically robust, chemically stable, and offers high flexibility and resilience which can enable it to reliably drape arbitrarily complex surface topologies. Graphene drapes may therefore provide a hitherto unavailable ability to tailor the dynamic wettability of surfaces for a variety of applications.


Assuntos
Grafite/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Água/química , Adsorção , Dureza , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície
4.
Yao Xue Xue Bao ; 48(11): 1692-7, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24475707

RESUMO

The quality and grade of traditional Chinese medicinal herbs were assessed by their characteristics traditionally. According to traditional experience, the quality of the purple Flos Farfarae is better than that of yellow buds. NMR-based metabolomic approach combined with significant analysis of microarray (SAM) and Spearman rank correlation analysis were used to investigate the different metabolites of the Flos Farfarae with different color feature. Principal component analysis (PCA) showed clear distinction between the purple and yellow flower buds of Tussilago farfara. The S-plot of orthogonal PLS-DA (OPLS-DA) and t test revealed that the levels of threonine, proline, phosphatidylcholine, creatinine, 4, 5-dicaffeoylquinic acid, rutin, caffeic acid, kaempferol analogues, and tussilagone were higher in the purple flower buds than that in the yellow buds, in agreement with the results of SAM and Spearman rank correlation analysis. The results confirmed the traditional medication experience that "purple flower bud is better than the yellow ones", and provide a scientific basis for assessing the quality of Flos Farfarae by the color features.


Assuntos
Metabolômica , Plantas Medicinais/química , Tussilago/química , Ácidos Cafeicos/análise , Cor , Creatinina/análise , Flores/química , Quempferóis/análise , Espectroscopia de Ressonância Magnética , Fosfatidilcolinas/análise , Análise de Componente Principal , Prolina/análise , Ácido Quínico/análogos & derivados , Ácido Quínico/análise , Rutina/análise , Sesquiterpenos/análise , Treonina/análise
5.
Phys Rev Lett ; 108(17): 176101, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680884

RESUMO

Using density-functional theory within the generalized gradient approximation, we investigate the energetics of oxygen subsurface adsorption governing the onset of bulk oxidation of Cu(100) surface. It shows that the presence of boundaries formed from merged missing-row nanodomains mismatched by a half unit-cell leads to preferred oxygen adsorption at the subsurface tetrahedral sites. The resulting Cu-O tetrahedrons along the domain boundary strikingly resemble that of the bulk oxide phase of Cu(2)O. These results provide direct atomic-scale insight into the microscopic origin of the crystallographic orientation relationships for oxide overlayer growth. Our results also suggest that the oxidation of an atomically flat terrace can still be a heterogeneous nucleation process controlled by defects in the oxygen-chemisorbed adlayer.

6.
ACS Nano ; 6(3): 2261-72, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22360783

RESUMO

We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N(2) gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CN(x)-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N(2) molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS(2), WS(2), etc.

7.
Nat Mater ; 11(3): 217-22, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22266468

RESUMO

We report that graphene coatings do not significantly disrupt the intrinsic wetting behaviour of surfaces for which surface-water interactions are dominated by van der Waals forces. Our contact angle measurements indicate that a graphene monolayer is wetting-transparent to copper, gold or silicon, but not glass, for which the wettability is dominated by short-range chemical bonding. With increasing number of graphene layers, the contact angle of water on copper gradually transitions towards the bulk graphite value, which is reached for ~6 graphene layers. Molecular dynamics simulations and theoretical predictions confirm our measurements and indicate that graphene's wetting transparency is related to its extreme thinness. We also show a 30-40% increase in condensation heat transfer on copper, as a result of the ability of the graphene coating to suppress copper oxidation without disrupting the intrinsic wettability of the surface. Such an ability to independently tune the properties of surfaces without disrupting their wetting response could have important implications in the design of conducting, conformal and impermeable surface coatings.


Assuntos
Grafite/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Silício/química , Propriedades de Superfície
8.
Nano Lett ; 11(8): 3123-7, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21749100

RESUMO

Water flow over carbon nanotubes has been shown to generate an induced voltage in the flow direction due to coupling of ions present in water with free charge carriers in the nanotubes. However, the induced voltages are typically of the order of a few millivolts, too small for significant power generation. Here we perform tests involving water flow with various molarities of hydrochloric acid (HCl) over few-layered graphene and report order of magnitude higher induced voltages for graphene as compared to nanotubes. The power generated by the flow of ∼0.6 M HCl solution at ∼0.01 m/sec was measured to be ∼85 nW for a ∼30 × 16 µm size graphene film, which equates to a power per unit area of ∼175 W/m(2). Molecular dynamics simulations indicate that the power generation is primarily caused by a net drift velocity of adsorbed Cl(-) ions on the continuous graphene film surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...