Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cannabis Cannabinoid Res ; 7(6): 882-895, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020417

RESUMO

Background: The bZIP gene family plays roles in biotic and abiotic stress, secondary metabolism, and other aspects in plants. They have been reported in Arabidopsis thaliana, Oryza sativa, Artemisia annua, and other plants, but their roles in Cannabis sativa have not been determined. Materials and Methods: In this study, we analyzed the genome-wide identification and expression profile of the bZIP gene family in C. sativa. Results: A total of 51 members of the bZIP gene family were identified based on the C. sativa genome and numbered in order from CsbZIP1 to CsbZIP51. Their phylogenetic relationships, cis-elements in promoter region, gene structures and motif compositions, physicochemical properties, chromosome locations, and expression profiles, were analyzed. The results showed that the 51 CsbZIPs were unevenly distributed on 10 chromosomes and could be clustered into 11 subfamilies. Furthermore, CsbZIPs located in the same subfamilies presented similar intron/exon organization and motif composition. The expression levels of CsbZIPs in various tissues (flowers, bracts, vegetative leaves, stems, and seeds) were determined using reverse transcription quantitative polymerase chain reaction. The expression levels of CsbZIPs were higher in flowers and bracts. The 51 CsbZIPs were explored, and their structure, evolution, and expression pattern in different tissues of C. sativa were characterized synthetically. The findings indicated that CsbZIPs are essential for the growth and development of C. sativa. Conclusions: These results provide a theoretical basis for subsequent research on hemp bZIP transcription factors and the cultivation of high-cannabidiol and low-tetrahydrocannabinol high-quality cannabis varieties.


Assuntos
Cannabis , Cannabis/genética , Filogenia
2.
Zhongguo Zhong Yao Za Zhi ; 45(3): 491-496, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32237505

RESUMO

Natural indigo, as one of the oldest dyes, is also a pivotal dye utilized in cotton fabrics today. A diversity of plants rich in indigo compounds belong to traditional Chinese herbal medicines. Indigo compounds have a variety of biological and pharmacological activities, including anticonvulsant, antibacterial, antifungal, antiviral and anticancer activities. A substantial progress in indigo biosynthesis has been made lately. This paper summarizes the value of indigo from the aspects of cultural history, biosynthetic pathways and the medicinal activities of its related derivatives involved in the pathways. In addition, the latest research advancements in indigo biosynthetic pathways is demonstrated in this paper, which would lay the theoretical foundation for the exploration and utilization of natural indigo.


Assuntos
Índigo Carmim/metabolismo , Indigofera/metabolismo , Vias Biossintéticas , Corantes
3.
Zhongguo Zhong Yao Za Zhi ; 45(3): 596-601, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32237518

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI) is a novel technique for in-situ distribution of various substances in tissue without labeling. This technique is increasingly applied to the study of medicinal plants owing to its high spatial resolution and its potential of in-situ analysis in small molecules. In this study, the structural information and their fragmentation patterns of the midazole alkaloids(1,3-dibenzyl-4,5-dimethylimidazolium chloride and 1,3-dibenzyl-2,4,5-trimethylimi-dazolium chloride) and benzylglucosinolate in the medicinal plant Maca(Lepdium meyeni) root were analyzed by ultra-high-performance liquid phase combined with LTQ-Orbitrap mass spectrometry(UHPLC-HR-MS). The localization of these active ingredients in the cross-sections of Maca root was performed by MALDI-MSI. These results demonstrated that the two types of imidazole alkaloids had a similar distributed pattern. They were located more in the cortex and the periderm than those in the medulla of a lateral root, while the localization of benzylglucosinolate was concentrated in the center of the root rather than in the cortex and the periderm. The precise spatial distribution of various secondary metabolites in tissue provides an important scientific basis for the accumulation of medicinal plant active ingredients in tissues. In addition, this imaging method is a promising technique for the rapid evaluation and identification of the active ingredients of traditional Chinese medicine in plant tissues, as well as assisting the research on the processing of medicinal plants.


Assuntos
Lepidium/química , Compostos Fitoquímicos/análise , Raízes de Plantas/química , Cromatografia Líquida de Alta Pressão , Plantas Medicinais/química , Metabolismo Secundário , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-878784

RESUMO

LBD(lateral organ boundaries)transcription factors play an important role in the regulation of plant growth, development and secondary metabolism. In order to explore the function of LBD genes in cannabis, the Cannabis sativa genome and transcriptome were used to identify the C. sativa LBD gene family, and analyzed their expression patterns. Our results showed that the cannabis LBD contains 32 members, which were divided into two major categories, seven sub-families. Class Ⅰ was divided into 5 sub-families, named Class Ⅰ_a to Class Ⅰ_e, while Class Ⅱ was divided into 2 sub-families, including Class Ⅱ_a and Class Ⅱ_b. Analysis showed that the number of amino acids encoded LBDs was between 172 and 356, and the isoelectric point was between 4.92 and 9.43. The mole-cular weight of LBD was between 18 862.92 Da and 40 081.33 Da, and most members are located in the nucleus. Chromosome positioning of LBD showed that 32 members were unevenly distributed on 10 chromosomes of C. sativa LBD transcription factor domain, gene structure and motifs are relatively conservative, and the characteristics of different class members are similar. The upstream promoter region of the gene contains a variety of cis-acting elements related to plant hormones and environmental factors, C. sativa LBD genes have different expression patterns in the stems, leaves, and flowers of ZYS varieties(low tetrahydrocannabinol, high cannabidiol). The members of the LBD gene family are mainly expressed in the flowers and stems of ZYS varieties, while members expressed in the leaves very few; Class Ⅱ members CsLBD21 and CsLBD23 are expressed in flowers and stems, and CsLBD8 and CsLBD18 are expressed in flowers, stems and leaves. These genes may participate in the growth and development of cannabis and affect the biosynthesis of cannabinoids. This study laid the foundation for the subsequently functional research of the cannabis LBD gene family.


Assuntos
Humanos , Cannabis/metabolismo , Regulação da Expressão Gênica de Plantas , Medicina Tradicional Chinesa , Filogenia , Proteínas de Plantas/metabolismo , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...