Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 2147-2161, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297751

RESUMO

We present polarization-free Bragg filters having subwavelength gratings (SWGs) in the lateral cladding region. This Bragg design expands modal fields toward upper cladding, resulting in enhanced light interaction with sensing analytes. Two device configurations are proposed and examined, one with index-matched coupling between transverse electric (TE) and transverse magnetic (TM) modes and the other one with hybrid-mode (HM) coupling. Both configurations introduce a strong coupling between two orthogonal modes (either TE-TM or HM1-HM2) and rotate the polarization of the input wave through Bragg reflection. The arrangements of SWGs help to achieve two configurations with different orthogonal modes, while expanding modal profiles toward the upper cladding region. Our proposed SWG-assisted Bragg gratings with polarization independency eliminate the need for a polarization controller and effectively tailor the modal properties, enhancing the potential of integrated photonic sensing applications.

2.
Light Sci Appl ; 12(1): 135, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268648

RESUMO

Electromagnetic coupling via an evanescent field or radiative wave is a primary characteristic of light, allowing optical signal/power transfer in a photonic circuit but limiting integration density. A leaky mode, which combines both evanescent field and radiative wave, causes stronger coupling and is thus considered not ideal for dense integration. Here we show that a leaky oscillation with anisotropic perturbation rather can achieve completely zero crosstalk realized by subwavelength grating (SWG) metamaterials. The oscillating fields in the SWGs enable coupling coefficients in each direction to counteract each other, resulting in completely zero crosstalk. We experimentally demonstrate such an extraordinarily low coupling between closely spaced identical leaky SWG waveguides, suppressing the crosstalk by ≈40 dB compared to conventional strip waveguides, corresponding to ≈100 times longer coupling length. This leaky-SWG suppresses the crosstalk of transverse-magnetic (TM) mode, which is challenging due to its low confinement, and marks a novel approach in electromagnetic coupling applicable to other spectral regimes and generic devices.

3.
Opt Lett ; 46(18): 4490-4493, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525029

RESUMO

We present an ultra-broadband silicon photonic polarization beam splitter (PBS) using adiabatically tapered extreme skin-depth (eskid) waveguides. Highly anisotropic metamaterial claddings of the eskid waveguides suppress the crosstalk of transverse-electric (TE) mode, while the large birefringence of the eskid waveguide efficiently cross-couples the transverse-magnetic (TM) mode. Two eskid waveguides are adiabatically tapered to smoothly translate TM mode to the coupled port via mode evolution while keeping the TE mode in the through port. The tapered cross-section of the eskid PBS was designed numerically, achieving a large bandwidth at 1400-1650 nm with extinction ratios >20dB. We experimentally demonstrated the tapered-eskid PBS and confirmed its broad bandwidth at 1490-1640 nm, limited by laser bandwidth. With its mode evolution, the tapered-eskid PBS is tolerant to fabrication imperfections and should be crucial for controlling polarizations in photonic circuits.

4.
Opt Lett ; 46(9): 2164-2167, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929444

RESUMO

In this Letter, we present a high extinction ratio and compact on-chip polarization beam splitter (PBS), based on an extreme skin-depth (eskid) waveguide. Subwavelength-scale gratings form an effectively anisotropic metamaterial cladding and introduce a large birefringence. The anisotropic dielectric perturbation of the metamaterial cladding suppresses the TE polarization extinction via exceptional coupling, while the large birefringence efficiently cross-couples the TM mode, thus reducing the coupling length. We demonstrated the eskid-PBS on a silicon-on-insulator platform and achieved an ultra-high extinction ratio PBS (${\approx} 60\;{\rm dB} $ for TE and ${\approx} 48\;{\rm dB} $ for TM) with a compact coupling length (${\approx} 14.5\,\,\unicode{x00B5}{\rm m}$). The insertion loss is also negligible (${\lt}{0.6}\;{\rm dB}$). The bandwidth is ${\gt}{80}$ (30) nm for the TE (TM) extinction ratio ${\gt}{20}\;{\rm dB}$. Our ultra-high extinction ratio PBS is crucial in implementing efficient polarization diversity circuits, especially where a high degree of polarization distinguishability is necessary, such as photonic quantum information processing.

5.
Opt Express ; 27(8): 10426-10437, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052902

RESUMO

We present a heterogeneously coupled Si/SiO2/SiN waveguide structure that can achieve extremely high dispersions (> | ± 107| ps · nm-1km-1). A strong mode coupling between the Si and SiN waveguides introduces a normal dispersion to symmetric mode and an anomalous dispersion to anti-symmetric mode, and the large group velocity difference between the two waveguides results in such high dispersions. Geometric parameters of the structure control the peak dispersions and the central wavelength of the mode coupling, and these engineering capabilities are studied numerically. Analytical representations on the heterogeneously coupled waveguides are also introduced and these equations explain the effects of geometric parameters. This extremely dispersive waveguide scheme can be constructed with other material combinations as well and should be of interest in ultrafast signal processing and spectroscopic applications.

6.
Appl Opt ; 56(25): 7256-7261, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047988

RESUMO

A triangular lattice dispersion compensating photonic crystal fiber is presented in this paper. The fiber produces high birefringence and operates at fundamental mode only. The full vector finite element method with a perfectly matched absorbing layer boundary condition is applied to investigate the guiding properties of the proposed fiber. The designed fiber demonstrates that it is possible to obtain a very large negative dispersion of -9486.1 ps/(nm·km) at 1550 nm wavelength with a negative dispersion more than -7000 ps/(nm·km) over the entire C-band (1530-1565 nm), which is suitable for broadband dispersion compensation. The birefringence is about 4.13×10-2 at 1550 nm wavelength, which is also very high. All these properties make this fiber very suitable in the area of broadband dispersion compensation and polarization-maintaining applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...