Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6435, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085303

RESUMO

The direct co-conversion of methane and carbon dioxide into valuable chemicals has been a longstanding scientific pursuit for carbon neutrality and combating climate change. Herein, we present a photo-driven chemical process that reforms these two major greenhouse gases together to generate green methanol and CO, two high-valued industrial chemicals. Isotopic labeling and control experiments indicate an oxygen-atom-graft occurs, wherein CO2 transfers one O into the C-H bond of CH4 via photo-activated interfacial catalysis with AuPd nanoparticles supported on GaN. The photoexcited AuPd/GaN interface effectively orchestrates the CH4 oxidation and the CO2 reduction producing 13.66 mmol g-1 of CH3OH yield over 10 h. This design provides a solid scientific basis for the photo-driven oxygen-atom-grafting process to be further extended to visible light region.

2.
ACS Appl Mater Interfaces ; 13(15): 17420-17428, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33835772

RESUMO

In this work, we present an in situ method to probe the evolution of photoelectrochemically driven surface oxidation on photoanodes during active operation in aqueous solutions. A standard solution of K4Fe(CN)6-KPi was utilized to benchmark the photocurrent and assess progressive surface oxidation on Ta3N5 in various oxidizing solutions. In this manner, a proportional increase in the surface oxygen concentration was detected with respect to oxidation time and further correlated with a continuous decline in the photocurrent. To discern how surface oxidation alters the photocurrent, we experimentally and theoretically explored its impact on the surface carrier recombination and the interfacial hole transfer rates. Our results indicate that the sluggish photocurrent demonstrated by oxidized Ta3N5 arises because of changes in both rates. In particular, the results suggest that the N-O replacement present on the Ta3N5 surface primarily increases the carrier recombination rate near the surface and to a lesser degree reduces the interfacial hole transfer rate. More generally, this methodology is expected to further our understanding of surface oxidation atop other nonoxide semiconductor photoelectrodes and its impact on their operation.

3.
Phys Chem Chem Phys ; 22(35): 19631-19642, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32869781

RESUMO

Semiconductor-liquid interfaces are essential to the operation of many energy devices. Crucially, the operational characteristics of such devices are dependent upon both the flat band potential and doping concentration present in their solid-state semiconducting region. Traditionally, capacitive "linear" Mott-Schottky plots have often been utilized to extract these two parameters. However, significant concentrations of surface states within semiconductor-liquid junctions can give rise to strong non-linearities that prevent an effective linearity-based analysis. In this work, we detail a theoretical approach for estimating both the doping concentration and flat band potential from the capacitive characteristics of semiconductor-liquid junctions heavily impacted upon by surface states. Our theoretical approach is applied to CuGaS2 immersed in an aqueous electrolyte, for which excellent convergent values of the doping concentration and flat band potential are obtained across a wide range of impedance measurement frequencies. The results suggest a marked improvement over a linearity-based approach that could assist the analysis of many types of semiconductor-liquid junctions subject to high concentrations of surface states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA