Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34947631

RESUMO

With the development of industrial civilization, advanced manufacturing technology has attracted widespread concern, including in the aerospace industry. In this paper, we report the applications of ultra-thin atomic layer deposition nanofilm in the advanced aerospace manufacturing industry, including aluminum anti-oxidation and secondary electron suppression, which are critical in high-power and miniaturization development. The compact and uniform aluminum oxide film, which is formed by thermal atomic layer deposition (ALD), can prevent the deep surface oxidation of aluminum during storage, avoiding the waste of material and energy in repetitive production. The total secondary electron yield of the C/TiN component nanofilm, deposited through plasma-enhanced atomic layer deposition, decreases 25% compared with an uncoated surface. The suppression of secondary electron emission is of great importance in solving the multipactor for high-power microwave components in space. Moreover, the controllable, ultra-thin uniform composite nanofilm can be deposited directly on the complex surface of devices without any transfer process, which is critical for many different applications. The ALD nanofilm shows potential for promoting system performance and resource consumption in the advanced aerospace manufacturing industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...