Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38987090

RESUMO

Elastic strain in Cu catalysts enhances their selectivity for the electrochemical CO2 reduction reaction (eCO2RR), particularly toward the formation of multicarbon (C2+) products. However, the reasons for this selectivity and the effect of catalyst precursors have not yet been clarified. Hence, we employed a redox strategy to induce strain on the surface of Cu nanocrystals. Oxidative transformation was employed to convert Cu nanocrystals to CuxO nanocrystals; these were subsequently electrochemically reduced to form Cu catalysts, while maintaining their compressive strain. Using a flow cell configuration, a current density of 1 A/cm2 and Faradaic efficiency exceeding 80% were realized for the C2+ products. The selectivity ratio of C2+/C1 was also remarkable at 9.9, surpassing that observed for the Cu catalyst under tensile strain by approximately 7.6 times. In-situ Raman and infrared spectroscopy revealed a decrease in the coverage of K+ ion-hydrated water (K·H2O) on the compressively strained Cu catalysts, consistent with molecular dynamics simulations and density functional theory calculations. Finite element method simulations confirmed that reducing the coverage of coordinated K·H2O water increased the probability of intermediate reactants interacting with the surface, thereby promoting efficient C-C coupling and enhancing the yield of C2+ products. These findings provide valuable insights into targeted design strategies for Cu catalysts used in the eCO2RR.

2.
Theor Appl Genet ; 136(5): 119, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103627

RESUMO

KEY MESSAGE: FLS is a disease that causes severe yield reduction in soybean. In this study, four genes (Glyma.16G176800, Glyma.16G177300, Glyma.16G177400 and Glyma.16G182300) were tentatively confirmed to play an important role in the resistance of soybean to FLS race 7. Frogeye leaf spot (FLS) causes severe yield loss in soybean and has been found in several countries worldwide. Therefore, it is necessary to select and utilize FLS-resistant varieties for the management of FLS. In the present study, 335 representative soybean materials were assessed for partial resistance to FLS race 7. Quantitative trait nucleotide (QTN) and FLS race 7 candidate genes were identified using genome-wide association analysis (GWAS) based on a site-specific amplified fragment sequencing (SLAF-seq) approach. A total of 23,156 single-nucleotide polymorphisms (SNPs) were used to evaluate the level of linkage disequilibrium with a minor allele frequency ≥ 5 and deletion data < 3%. These SNPs covered about 947.01 MBP, nearly 86.09% of the entire soybean genome. In addition, a compressed mixed linear model was utilized to identify association signals for partial resistance to FLS race 7. A total of 15 QTNs associated with resistance were found to be novel for FLS race 7 resistance. A total of 217 candidate genes located in the 200-kb genomic region of these peak SNPs were identified. Based on gene association analysis, qRT-PCR, haplotype analysis and virus-induced gene silencing (VIGS) systems were used to further verify candidate genes Glyma.16G176800, Glyma.16G177300, Glyma.16G177400 and Glyma.16G182300. This indicates that these four candidate genes may participate in FLS race 7 resistance responses.


Assuntos
Genes de Plantas , Locos de Características Quantitativas , Glycine max/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Sequenciamento de Nucleotídeos em Larga Escala
3.
Nanomaterials (Basel) ; 13(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049353

RESUMO

The controlled growth of Cu2S nanoarrays was constructed by a facile two-step impregnation synthesis route. The as-synthesized Cu2S/CuO@Cu samples were precisely characterized in terms of surface morphology, phase, composition, and oxidation states. At the laser irradiation of 808 nm, Cu2S/CuO@Cu heated up to 106 °C from room temperature in 120 s, resulting in an excellent photothermal conversion performance. The Cu2S/CuO@Cu exhibited excellent cycling performance-sustaining the photothermal performance during five heating-cooling cycles. The finite difference time domain (FDTD) simulation of optical absorption and electric field distributions assured the accuracy and reliability of the developed experimental conditions for acquiring the best photothermal performance of Cu2S/CuO@Cu.

4.
Angew Chem Int Ed Engl ; 62(2): e202213913, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36342476

RESUMO

Catalytic asymmetric hydroamination of alkenes with Lewis basic amines is of great interest but remains a challenge in synthetic chemistry. Here, we developed a Co-catalyzed asymmetric hydroamination of arylalkenes directly using commercially accessible secondary amines. This process enables the efficient access to valuable α-chiral tertiary amines in good to excellent yields and enantioselectivities. Mechanistic studies suggest that the reaction includes a CoH-mediated hydrogen atom transfer (MHAT) with arylalkenes, followed by a pivotal catalyst controlled SN 2-like pathway between in situ generated electrophilic cationic alkylcobalt(IV) species and free amines. This radical-polar crossover strategy not only provides a straightforward and alternative approach for the synthesis of enantioenriched α-tertiary amines, but also underpins the substantial opportunities in developing asymmetric radical functionalization of alkenes with various free nucleophiles in oxidative MHAT catalysis.


Assuntos
Aminas , Cobalto , Aminação , Estereoisomerismo , Estrutura Molecular , Alcenos , Hidrogênio , Catálise
5.
Front Plant Sci ; 13: 1026581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388509

RESUMO

Genome-wide association studies (GWAS) is an efficient method to detect quantitative trait locus (QTL), and has dissected many complex traits in soybean [Glycine max (L.) Merr.]. Although these results have undoubtedly played a far-reaching role in the study of soybean biology, environmental interactions for complex traits in traditional GWAS models are frequently overlooked. Recently, a new GWAS model, 3VmrMLM, was established to identify QTLs and QTL-by-environment interactions (QEIs) for complex traits. In this study, the GLM, MLM, CMLM, FarmCPU, BLINK, and 3VmrMLM models were used to identify QTLs and QEIs for tocopherol (Toc) content in soybean seed, including δ-Tocotrienol (δ-Toc) content, γ-Tocotrienol (γ-Toc) content, α-Tocopherol (α-Toc) content, and total Tocopherol (T-Toc) content. As a result, 101 QTLs were detected by the above methods in single-environment analysis, and 57 QTLs and 13 QEIs were detected by 3VmrMLM in multi-environment analysis. Among these QTLs, some QTLs (Group I) were repeatedly detected three times or by at least two models, and some QTLs (Group II) were repeatedly detected only by 3VmrMLM. In the two Groups, 3VmrMLM was able to correctly detect all known QTLs in group I, while good results were achieved in Group II, for example, 8 novel QTLs were detected in Group II. In addition, comparative genomic analysis revealed that the proportion of Glyma_max specific genes near QEIs was higher, in other words, these QEIs nearby genes are more susceptible to environmental influences. Finally, around the 8 novel QTLs, 11 important candidate genes were identified using haplotype, and validated by RNA-Seq data and qRT-PCR analysis. In summary, we used phenotypic data of Toc content in soybean, and tested the accuracy and reliability of 3VmrMLM, and then revealed novel QTLs, QEIs and candidate genes for these traits. Hence, the 3VmrMLM model has broad prospects and potential for analyzing the genetic structure of complex quantitative traits in soybean.

6.
Chem Commun (Camb) ; 58(93): 13023, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36367129

RESUMO

Retraction of 'CoH-catalyzed radical hydroalkylation of alkenes with 1,3-dicarbonyls' by Meihui Guan et al., Chem. Commun., 2022, 58, 5265-5268, https://doi.org/10.1039/D2CC01382G.

7.
Angew Chem Int Ed Engl ; 61(26): e202201967, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35363410

RESUMO

An efficient and general intermolecular Cobalt(II)-catalyzed asymmetric alkylation of styrenes with (hetero)arenes including indoles, thiophene and electron rich arenes has been developed, providing straightforward access to enantioenriched alkyl(hetero)arenes with high enantioselectivity. Mechanistic studies suggest that the reaction underwent a CoH-mediated hydrogen atom transfer (HAT) with alkenes, followed by a pivotal catalyst-controlled SN 2-like pathway between in situ generated organocobalt(IV) species and aromatic nucleophiles. This is the first CoH-catalyzed asymmetric hydrofunctionalization using carbon nucleophiles, providing a new strategy for asymmetric Friedel-Crafts type alkylation.

8.
Chem Commun (Camb) ; 58(34): 5265-5268, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35389410

RESUMO

Metal-hydride hydrogen atom transfer (MHAT) catalysis has emerged as a useful reaction platform for alkene hydrofunctionalization with high chemoselectivity and predictable branched selectivity. However, MHAT-mediated hydrofunctionalization involves carbon-carbon bond formation still confined to carbon electrophiles. Here, we describe a mild, general, scalable, and functional group tolerant CoH-catalyzed intermolecular hydroalkylation of alkenes with 1,3-dicarbonyls. This kind of CoH-catalyzed coupling of alkenes with carbon nucleophiles represents an important complement to the arsenal of MHAT-initiated hydrofunctionalization of alkenes.


Assuntos
Alcenos , Hidrogênio , Alcenos/química , Carbono/química , Catálise , Hidrogênio/química , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...