Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pancreatology ; 24(3): 404-423, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342661

RESUMO

Pancreatic cancer is one of digestive tract cancers with high mortality rate. Despite the wide range of available treatments and improvements in surgery, chemotherapy, and radiation therapy, the five-year prognosis for individuals diagnosed pancreatic cancer remains poor. There is still research to be done to see if immunotherapy may be used to treat pancreatic cancer. The goals of our research were to comprehend the tumor microenvironment of pancreatic cancer, found a useful biomarker to assess the prognosis of patients, and investigated its biological relevance. In this paper, machine learning methods such as random forest were fused with weighted gene co-expression networks for screening hub immune-related genes (hub-IRGs). LASSO regression model was used to further work. Thus, we got eight hub-IRGs. Based on hub-IRGs, we created a prognosis risk prediction model for PAAD that can stratify accurately and produce a prognostic risk score (IRG_Score) for each patient. In the raw data set and the validation data set, the five-year area under the curve (AUC) for this model was 0.9 and 0.7, respectively. And shapley additive explanation (SHAP) portrayed the importance of prognostic risk prediction influencing factors from a machine learning perspective to obtain the most influential certain gene (or clinical factor). The five most important factors were TRIM67, CORT, PSPN, SCAMP5, RFXAP, all of which are genes. In summary, the eight hub-IRGs had accurate risk prediction performance and biological significance, which was validated in other cancers. The result of SHAP helped to understand the molecular mechanism of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Humanos , Área Sob a Curva , Redes Reguladoras de Genes , Imunoterapia , Aprendizado de Máquina , Microambiente Tumoral , Proteínas de Membrana
2.
EClinicalMedicine ; 68: 102409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273888

RESUMO

Background: Acute kidney injury (AKI) is a common and serious organ dysfunction in critically ill children. Early identification and prediction of AKI are of great significance. However, current AKI criteria are insufficiently sensitive and specific, and AKI heterogeneity limits the clinical value of AKI biomarkers. This study aimed to establish and validate an explainable prediction model based on the machine learning (ML) approach for AKI, and assess its prognostic implications in children admitted to the pediatric intensive care unit (PICU). Methods: This multicenter prospective study in China was conducted on critically ill children for the derivation and validation of the prediction model. The derivation cohort, consisting of 957 children admitted to four independent PICUs from September 2020 to January 2021, was separated for training and internal validation, and an external data set of 866 children admitted from February 2021 to February 2022 was employed for external validation. AKI was defined based on serum creatinine and urine output using the Kidney Disease: Improving Global Outcome (KDIGO) criteria. With 33 medical characteristics easily obtained or evaluated during the first 24 h after PICU admission, 11 ML algorithms were used to construct prediction models. Several evaluation indexes, including the area under the receiver-operating-characteristic curve (AUC), were used to compare the predictive performance. The SHapley Additive exPlanation method was used to rank the feature importance and explain the final model. A probability threshold for the final model was identified for AKI prediction and subgrouping. Clinical outcomes were evaluated in various subgroups determined by a combination of the final model and KDIGO criteria. Findings: The random forest (RF) model performed best in discriminative ability among the 11 ML models. After reducing features according to feature importance rank, an explainable final RF model was established with 8 features. The final model could accurately predict AKI in both internal (AUC = 0.929) and external (AUC = 0.910) validations, and has been translated into a convenient tool to facilitate its utility in clinical settings. Critically ill children with a probability exceeding or equal to the threshold in the final model had a higher risk of death and multiple organ dysfunctions, regardless of whether they met the KDIGO criteria for AKI. Interpretation: Our explainable ML model was not only successfully developed to accurately predict AKI but was also highly relevant to adverse outcomes in individual children at an early stage of PICU admission, and it mitigated the concern of the "black-box" issue with an undirect interpretation of the ML technique. Funding: The National Natural Science Foundation of China, Jiangsu Province Science and Technology Support Program, Key talent of women's and children's health of Jiangsu Province, and Postgraduate Research & Practice Innovation Program of Jiangsu Province.

3.
Microorganisms ; 11(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38004638

RESUMO

Coal gangue is a solid waste formed during coal production, and the acid mine drainage it generates during open-pit storage severely pollutes the ecological environment of mining areas. Microorganisms play a crucial catalytic role in acidification, and their species and gene functions change during the oxidation process of coal gangue. In this study, the changes in microbial community structure were investigated during the initial acidification process for newly produced gangue exposed to moisture by monitoring the changes in pH, EC, sulfate ion concentration, and the iron oxidation rate of gangue leaching solutions. Moreover, the composition and functional abundance of microbial communities on the surface of the gangue were analyzed with rainfall simulation experiments and 16S rRNA sequencing. The study yielded the following findings: (1) The critical period for newly produced gangue oxidation spanned from 0~15 d after its exposure to water; the pH of leaching solutions decreased from 4.65 to 4.09 during this time, and the concentration and oxidation rate of iron in the leaching solutions remained at low levels, indicating that iron oxidation was not the main driver for acidification during this stage. (2) When the gangue was kept dry, Burkholderia spp. dominated the gangue microbial community. When the gangue was exposed to moisture, the rate of acidification accelerated, and Pseudomonas replaced Burkholderia as the dominant genus in the community. (3) In terms of gene function, the microbial community of the acidified gangue had stronger nitrogen cycling functions, and an increase in the abundance of microorganisms related to the sulfur cycle occurred after day 15 of the experiment. The microbial community in the acidified gangue had more stress resistance than the community of the newly formed gangue, but its potential to decompose environmental pollutants decreased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...