Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurorobot ; 13: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133841

RESUMO

Gravity aided inertial navigation system (GAINS), which uses earth gravitational anomaly field for navigation, holds strong potential as an underwater navigation system. The gravity matching algorithm is one of the key factors in GAINS. Existing matching algorithms cannot guarantee the matching accuracy in the matching algorithms based gravity aided navigation when the initial errors are large. Evolutionary algorithms, which are mostly have the ability of global optimality and fast convergence, can be used to solve the gravity matching problem under large initial errors. However, simply applying evolutionary algorithms to GAINS may lead to false matching. Therefore, in order to deal with the underwater gravity matching problem, it is necessary to improve the traditional evolutionary algorithms. In this paper, an affine transformation based artificial bee colony (ABC) algorithm, which can greatly improve the positioning precision under large initial errors condition, is developed. The proposed algorithm introduces affine transformation to both initialization process and evolutionary process of ABC algorithm. The single-point matching strategy is replaced by the strategy of matching a sequence of several consecutive position vectors. In addition, several constraints are introduced to the process of evolution by using the output characteristics of the inertial navigation system (INS). Simulations based on the actual gravity anomaly base map have been performed for the validation of the proposed algorithm.

2.
Sensors (Basel) ; 19(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646546

RESUMO

Database-referenced navigation (DBRN) using geophysical information is often implemented on autonomous underwater vehicles (AUVs) to correct the positional errors of the inertial navigation system (INS). The matching algorithm is a pivotal technique in DBRN. However, it is impossible to completely eliminate mismatches in practical application. Therefore, it is necessary to perform a mismatch detection method on the outputs of DBRN. In this paper, we propose a real-time triple constraint mismatch detection method. The proposed detection method is divided into three modules: the model fitting detection module, the spatial structure detection module, and the distance ratio detection module. In the model fitting detection module, the navigation characteristics of AUVs are used to select the fitting model. In the spatial structure detection module, the proposed method performs the mismatch detection based on the affine transformation relationship between the INS-indicated trajectory and the corresponding matched trajectory. In the distance ratio detection module, we derive the distance ratio constraint between the INS-indicated trajectory and the corresponding matched trajectory. Simulations based on an actual geomagnetic anomaly base map have been performed for the validation of the proposed method.

3.
Sensors (Basel) ; 19(1)2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583497

RESUMO

As a structural interference, spoofing is difficult to detect by the target receiver while the advent of a repeater makes the implementation of spoofing much easier. Most existing anti-spoofing methods are merely capable of detecting the spoofing, i.e., they cannot effectively remove counterfeit signals. Therefore, based on the similarities between multipath and spoofing, the feasibility of applying multipath mitigation methods to anti-spoofing is first analyzed in this paper. We then propose a novel algorithm based on maximum likelihood (ML) estimation to resolve this problem. The tracking channels with multi-correlators are constructed and a set of corresponding steps of detecting and removing the counterfeit signals is designed to ensure that the receiver locks the authentic signals in the presence of spoofing. Finally, the spoofing is successfully executed with a software receiver and the saved intermediate frequency (IF) signals, on this basis, the effectiveness of the proposed algorithm is verified by experiments.

4.
Sensors (Basel) ; 16(5)2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27144570

RESUMO

If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...