Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(5): 619-626, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37037960

RESUMO

Methanol with 12.5 wt% H2 content is widely considered a liquid hydrogen medium. Taking into account water with 11.1 wt% H2 content, H2 synthesis from the mixture of water and methanol is a promising method for on-demand hydrogen production. We demonstrate an atomic-level catalyst design strategy using the synergy between single atoms and nanodots for H2 production. The PtCu-TiO2 sandwich photocatalyst achieves a remarkable H2 formation rate (2,383.9 µmol h-1) with a high apparent quantum efficiency (99.2%). Furthermore, the oxidation product is a high-value chemical formaldehyde with 98.6% selectivity instead of CO2, leading to a nearly zero-carbon-emission process. Detailed investigations indicate a dual role of the copper atoms: an electron acceptor to facilitate photoelectron transfer to Pt, and a hole acceptor for the selective oxidation of methanol to formaldehyde, thus avoiding over-oxidation to CO2. The synergy between Pt nanodots and Cu single atoms together reduces the activation energy of this process to 13.2 kJ mol-1.

2.
Chem Soc Rev ; 51(14): 5777-5794, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35770623

RESUMO

Sunlight as the most abundant renewable energy holds the promise to make our society sustainable. However, due to its low power density and intermittence, efficient conversion and storage of solar energy as a clean fuel are crucial. Apart from solar fuel synthesis, sunlight can also be used to drive other reactions including organic conversion and air/water purification. Given such potential of photocatalysis, the past few decades have seen a surge in the discovery of photocatalysts. However, the current photocatalytic efficiency is still very moderate. To address this challenge, it is important to understand fundamental factors that dominate the efficiency of a photocatalytic process to enable the rational design and development of photocatalytic systems. Many recent studies highlighted transient absorption spectroscopy (TAS) and time-resolved infrared (TRIR) spectroscopy as powerful approaches to characterise charge carrier dynamics and reaction pathways to elucidate the reasons behind low photocatalytic efficiencies, and to rationalise photocatalytic activities exhibited by closely related materials. Accordingly, as a fast-moving area, the past decade has witnessed an explosion in reports on charge carrier dynamics and reaction mechanisms on a wide range of photocatalytic materials. This critical review will discuss the application of TAS and TRIR in a wide range of heterogeneous photocatalytic systems, demonstrating the variety of ways in which these techniques can be used to understand the correlation between materials design, charge carrier behaviour, and photocatalytic activity. Finally, it provides a comprehensive outlook for potential developments in the area of time-resolved spectroscopies with an aim to provide design strategies for photocatalysts.

3.
ACS Catal ; 11(13): 8226-8238, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34306811

RESUMO

The intrinsic behavior of photogenerated charges and reactions with chemicals are key for a photocatalytic process. To observe these basic steps is of great importance. Here we present a reliable and robust system to monitor these basic steps in powder photocatalysts, and more importantly to elucidate the key issue in photocatalytic methane conversion over the benchmark catalyst TiO2. Under constant excitation, the absorption signal across the NIR region was demonstrated to be dominated by photoexcited electrons, the absorption of photoexcited holes increases toward shorter wavelengths in the visible region, and the overall shapes of the photoinduced absorption spectra obtained using the system demonstrated in the present work are consistent with widely accepted transient absorption results. Next, in situ measurements provide direct experimental evidence that the initial step of methane activation over TiO2 involves oxidation by photoexcited holes. It is calculated that 90 ± 6% of photoexcited electrons are scavenged by O2 (in dry air), 61 ± 9% of photoexcited holes are scavenged by methane (10% in argon), and a similar amount of photoexcited electrons can be scavenged by O2 even when the O2 concentration is reduced by a factor of 10. The present results suggest that O2 is much more easily activated in comparison to methane over anatase TiO2, which rationalizes the much higher methane/O2 ratio frequently used in practice in comparison to that required stoichiometrically for photocatalytic production of value-added chemicals via methane oxidation with oxygen. In addition, methanol (a preferable product of methane oxidation) is much more readily oxidized than methane over anatase TiO2.

4.
J Chem Phys ; 152(19): 194201, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687236

RESUMO

Photocatalysis is a promising sustainable method to generate solar fuels for the future, as well as having other applications such as water/air purification. However, the performance of photocatalysts is often limited by poor charge carrier dynamics. To improve charge carrier dynamics, it is necessary to characterize and understand charge carrier behavior in photocatalytic systems. This critical review will present Transient Absorption Spectroscopy (TAS) as a useful technique for understanding the behavior of photoexcited charges in semiconductor photocatalysts. The role of TAS amongst other techniques for characterizing charge carrier behavior will be outlined. Basic principles behind TAS will be introduced, and interpretation of TAS spectra and kinetics will be discussed in the context of exemplar literature. It will be demonstrated that TAS is a powerful technique to obtain fundamental understanding of the behavior of photoexcited charges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...