Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5789-5796, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471996

RESUMO

Herbal pair is formed based on the experience summary of doctors' deep understanding and perception of the medicinal nature in long-term clinical practice. It gradually becomes the exquisite structural unit for preparing traditional Chinese medicine(TCM) prescriptions, and often plays a core bridge role in the prescription combination. Frankincense and myrrh are raw resin materials of incense abroad, which are subsequently included as Chinese medicinal herbs and endowed with rich medicinal connotation. With the functions of relaxing Zang-fu organs, activating blood and relieving pain, they have definite clinical efficacy. From the perspective of herbal description and clinical application, this study systematically analyzed the combination of frankincense and myrrh as well as their combination proportion, efficacy characterization, diseases and syndromes, effective components and action mechanism. On this basis, the focus of in-depth research of frankincense-myrrh and the application prospects were proposed, in order to further reveal the potential meditation law of this herbal pair, thus contributing to clinical practice and drug innovation of traditional Chinese medicine, and providing reference for understanding of TCM medicinal nature and research of herbal pairs.


Assuntos
Medicamentos de Ervas Chinesas , Franquincenso , Humanos , Franquincenso/química , Commiphora , Resinas Vegetais/química , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Zhongguo Zhong Yao Za Zhi ; 46(10): 2371-2379, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34047081

RESUMO

In this paper, network pharmacology method and molecular docking technique were used to investigate the target genes of Olibanum and Myrrha compatibility and the possible mechanism of action in the treatment of rheumatoid arthritis(RA). Our team obtained the main active components of Olibanum-Myrrha based on literatures study, relevant traditional Chinese medicine systematic pharmacological databases and literature retrieval, and made target prediction of the active components through SwissTargetPrediction database. At the same time, RA-related targets were collected through DrugBank, GeneCards and Therapeutic Target Database(TDD) databases; and VENNY 2.1 was use to collect intersection targets to map common targets of drug and disease of Venn diagram online. The team used STRING database to construct PPI protein interaction network diagram, and screen out core targets according to the size of the interaction, and Cytoscape 3.6.0 software was used to construct network models of "traditional Chinese medicine-component-target" "traditional Chinese medicine-component-target-disease" and core target interaction network model. The intersection target was analyzed by using DAVID 6.8 online database for GO function analysis and KEGG pathway enrichment analysis, and Pathon was used to visualization. AutoDock Vina and Pymol were used to connect the core active components with the core targets. Sixteen active components of Olibanum-Myrrha pairs were found and collected in the laboratory, and 320 relevant potential targets, 468 RA-related targets and 62 intersection targets were obtained through the Venn diagram. It mainly acted on multiple targets, such as IL6, TNF, IL1 B and MAPK1, involving TNF signaling pathway and Toll-like receptor signaling pathway in RA treatment. Finally, in this study, possible targets and signaling pathways of Olibanum-Myrrha compatibility therapy for RA were discussed, and molecular docking between core targets and core active components was conducted, which could provide scientific basis for the study on the mechanism of Olibanum-Myrrha compatibility.


Assuntos
Artrite Reumatoide , Medicamentos de Ervas Chinesas , Franquincenso , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular
3.
Molecules ; 24(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683684

RESUMO

Frankincense and myrrha (FM), commonly used as a classical herbal pair, have a wide range of clinical applications and definite anti-inflammatory activity. However, anti-neuroinflammation effects and mechanisms are not clear. In this study, we adopted a lipopolysaccharide (LPS)-induced microglial (BV2) cell model and a network pharmacology method to reveal the anti-neuroinflammatory effects and mechanisms of boswellic acid (BA) and myrrha sesquiterpenes (MS) with different proportions of compatibility. The data showed that the different ratios of BA and MS had different degrees of inhibition of interleukin-1ß (IL-1ß), IL-6, and inducible nitric oxide synthase (iNOS) mRNA expression, down-regulated the phosphor-nuclear factor kappa B/nuclear factor kappa B (p-NF-Ò¡B)/(NF-Ò¡B), phosphorylated protein kinase b/protein kinase b (p-AKT/AKT), and Toll-like receptor 4 (TLR4) protein expression levels, and increased phospho-PI3 kinase (p-PI3K) protein expression levels. When the ratios of BA and MS were 10:1, 5:1, and 20:1, better effective efficacy was exhibited. According to the correlation analysis between the effect index and bioactive substances, it was suggested that 2-methoxy-5-acetoxy -fruranogermacr-1(10)-en-6-one (Compound 1), 3α-acetyloxylanosta-8,24-dien-21-oic acid (Compound 2), 11-keto-boswellic acid (Compound 3), and 3-acetyl-11-keto-ß -boswellic acid (Compound 4) made important contributions to the treatment of neuroinflammation. Furthermore, based on the network pharmacological analysis, it was found that these four active compounds acted on 31 targets related to neuroinflammation and were involved in 32 signaling pathways which mainly related to the immune system, cardiovascular system, and nervous system, suggesting that BA and MS could be used to treat neuroinflammation.


Assuntos
Commiphora/química , Inflamação/tratamento farmacológico , Microglia/patologia , Fármacos Neuroprotetores/uso terapêutico , Sesquiterpenos/uso terapêutico , Triterpenos/uso terapêutico , Animais , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sesquiterpenos/farmacologia , Receptor 4 Toll-Like/metabolismo , Triterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...