Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 936696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968110

RESUMO

Purple-stem Brassica napus (B. napus) is a phenotype with unique color because of its high anthocyanins content. Anthocyanins are naturally occurring plant pigments that have antioxidants activity and play important role in plant defense against abiotic and biotic stresses. In the present study, drought induced effects on plants were investigated in hydroponically grown seedlings of green stem (GS) and purple stem (PS) genotypes of B. napus. The results of this study showed that the major function of anthocyanins accumulation during drought was to enhance the antioxidant capability and stress tolerance in B. napus plants. Our results showed that drought significantly inhibited the plant growth in terms of decreased biomass accumulation in both genotypes, although marked decline was observed in GS genotype. The reduction in photosynthetic attributes was more noticeable in the GS genotype, whereas the PS genotype showed better performance under drought stress. Under stressful conditions, both the genotype showed excessive accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher levels of antioxidant enzymes activities. Under drought conditions, the GS genotype showed apparent damages on chloroplast deformation like in thylakoid membrane and grana structural distortion and fewer starch grains and bigger plastoglobuli. Moreover, during drought stress, the PS genotype exhibited maximum expression levels of anthocyanins biosynthesis genes and antioxidant enzymes accompanied by higher stress tolerance relative to GS genotype. Based on these findings, it can be concluded that GS genotype found more sensitive to drought stress than the PS genotype. Furthermore this research paper also provides practical guidance for plant biologists who are developing stress-tolerant crops by using anthocyanin biosynthesis or regulatory genes.

2.
Comput Intell Neurosci ; 2021: 7550670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675972

RESUMO

After the production of printed circuit boards (PCB), PCB manufacturers need to remove defected boards by conducting rigorous testing, while manual inspection is time-consuming and laborious. Many PCB factories employ automatic optical inspection (AOI), but this pixel-based comparison method has a high false alarm rate, thus requiring intensive human inspection to determine whether alarms raised from it resemble true or pseudo defects. In this paper, we propose a new cost-sensitive deep learning model: cost-sensitive siamese network (CSS-Net) based on siamese network, transfer learning and threshold moving methods to distinguish between true and pseudo PCB defects as a cost-sensitive classification problem. We use optimization algorithms such as NSGA-II to determine the optimal cost-sensitive threshold. Results show that our model improves true defects prediction accuracy to 97.60%, and it maintains relatively high pseudo defect prediction accuracy, 61.24% in real-production scenario. Furthermore, our model also outperforms its state-of-the-art competitor models in other comprehensive cost-sensitive metrics, with an average of 33.32% shorter training time.


Assuntos
Algoritmos , Benchmarking , Humanos
3.
Physiol Plant ; 172(2): 1133-1148, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33599291

RESUMO

Climate change, food insecurity, water scarcity, and population growth are some of today's world's frightening problems. Drought stress exerts a constant threat to field crops and is often seen as a major constraint on global agricultural productivity; its intensity and frequency are expected to increase in the near future. The present study investigated the effects of drought stress (15% w/v polyethylene glycol PEG-6000) on physiological and biochemical changes in five Brassica napus cultivars (ZD630, ZD622, ZD619, GY605, and ZS11). For drought stress induction, 3-week-old rapeseed oil seedlings were treated with PEG-6000 in full strength Hoagland nutrient solution for 7 days. PEG treatment significantly decreased the plant growth and photosynthetic efficiency, including primary photochemistry (Fv/Fm) of PSII, intercellular CO2 , net photosynthesis, chlorophyll contents, and water-use efficiency of all studied B. napus cultivars; however, pronounced growth retardations were observed in cultivar GY605. Drought-stressed B. napus cultivars also experienced a sharp rise in H2 O2 generation and malondialdehyde (MDA) content. Additionally, the accumulation of ROS was accompanied by increased activity of enzymatic antioxidants (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase), although the increase was more obvious in ZD622 and ZS11. Drought stress also caused an increased endogenous hormonal biosynthesis (abscisic acid, jasmonic acid, salicylic acid) and accumulation of total soluble proteins and proline content, but the extent varies in B. napus cultivars. These results suggest that B. napus cultivars have an efficient drought stress tolerance mechanism, as shown by improved antioxidant enzyme activities, photosynthetic and hormonal regulation.


Assuntos
Brassica napus , Antioxidantes , Secas , Fotossíntese , Plântula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...