Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 49(6): 470-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22521876

RESUMO

Powdery mildews are phytopathogenic ascomycetes that have an obligate biotrophic lifestyle and establish intimate relationships with their plant hosts. A crucial aspect of this plant-fungus interaction is the formation of specialized fungal infection structures termed haustoria. Although located within the cell boundaries of plant epidermal cells, haustoria remain separated from the plant cytoplasm by a host plasma membrane derivative, the extrahaustorial membrane. Haustoria are thought to represent pivotal sites of nutrient uptake and effector protein delivery. We enriched haustorial complexes from Arabidopsis thaliana plants infected with the powdery mildew fungus Golovinomyces orontii and performed in-depth transcriptome analysis by 454-based pyrosequencing of haustorial cDNAs. We assembled 7077 expressed sequence tag (EST) contigs with greater than 5-fold average coverage and analyzed these with regard to the respective predicted protein functions. We found that transcripts coding for gene products with roles in protein turnover, detoxification of reactive oxygen species and fungal pathogenesis are abundant in the haustorial EST contigs, while surprisingly transcripts encoding presumptive nutrient transporters were not highly represented in the haustorial cDNA library. A substantial proportion (∼38%) of transcripts coding for predicted secreted proteins comprises effector candidates. Our data provide valuable insights into the transcriptome of the key infection structure of a model obligate biotrophic phytopathogen.


Assuntos
Ascomicetos/genética , Transcriptoma , Arabidopsis/microbiologia , Ascomicetos/isolamento & purificação , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Doenças das Plantas/microbiologia
2.
Cell Microbiol ; 13(2): 210-26, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20880355

RESUMO

Powdery mildew fungi are biotrophic pathogens that require living plant cells for their growth and reproduction. Elaboration of a specialized cell called a haustorium is essential for their pathogenesis, providing a portal into host cells for nutrient uptake and delivery of virulence effectors. Haustoria are enveloped by a modified plant plasma membrane, the extrahaustorial membrane (EHM), and an extrahaustorial matrix (EHMx), across which molecular exchange must occur, but the origin and composition of this interfacial zone remains obscure. Here we present a method for isolating Golovinomyces orontii haustoria from Arabidopsis leaves and an ultrastructural characterization of the haustorial interface. Haustoria were progressively encased by deposits of plant cell wall polymers, delivered by secretory vesicles and multivesicular bodies (MVBs) that ultimately become entrapped within the encasement. The EHM and EHMx were not labelled by antibodies recognizing eight plant cell wall and plasma membrane antigens. However, plant resistance protein RPW8.2 was specifically recruited to the EHMs of mature haustoria. Fungal cell wall-associated molecular patterns such as chitin and ß-1,3-glucans were exposed at the surface of haustoria. Fungal MVBs were abundant in haustoria and putative exosome vesicles were detected in the paramural space and EHMx, suggesting the existence of an exosome-mediated secretion pathway.


Assuntos
Arabidopsis/microbiologia , Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno , Arabidopsis/química , Ascomicetos/química , Proteínas Fúngicas/análise , Glucanos/análise , Doenças das Plantas/microbiologia , Folhas de Planta/química , Folhas de Planta/microbiologia , Proteínas de Plantas/análise
3.
Genetics ; 173(4): 1991-2004, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16751666

RESUMO

Nonself recognition is exemplified in the fungal kingdom by the regulation of cell fusion events between genetically different individuals (heterokaryosis). The het-6 locus is one of approximately 10 loci that control heterokaryon incompatibility during vegetative growth of N. crassa. Previously, it was found that het-6-associated incompatibility in Oak Ridge (OR) strains involves two contiguous genes, het-6 and un-24. The OR allele of either gene causes "strong" incompatibility (cell death) when transformed into Panama (PA)-background strains. Several remarkable features of the locus include the nature of these incompatibility genes (het-6 is a member of a repetitive gene family and un-24 also encodes the large subunit of ribonucleotide reductase) and the observation that un-24 and het-6 are in severe linkage disequilibrium. Here, we identify "weak" (slow, aberrant growth) incompatibility activities by un-24PA and het-6PA when transformed separately into OR strains, whereas together they exhibit an additive, strong effect. We synthesized strains with the new allelic combinations un-24PA het-6OR and un-24OR het-6PA, which are not found in nature. These strains grow normally and have distinct nonself recognition capabilities but may have reduced fitness. Comparing the Oak Ridge and Panama het-6 regions revealed a paracentric inversion, the architecture of which provides insights into the evolution of the un-24-het-6 gene complex.


Assuntos
Inversão Cromossômica , Conjugação Genética/genética , Evolução Molecular , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Neurospora crassa/genética , Proteínas Fúngicas/metabolismo , Desequilíbrio de Ligação , Neurospora crassa/crescimento & desenvolvimento
4.
Fungal Genet Biol ; 38(2): 209-19, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12620257

RESUMO

A barrage is a line or zone of demarcation that may develop at the interface where genetically different fungi meet. Barrage formation represents a type of nonself recognition that has often been attributed to the heterokaryon incompatibility system, which limits the co-occurrence of genetically different nuclei in the same cytoplasm during the asexual phase of the life cycle. While the genetic basis of the heterokaryon incompatibility system is well characterized in Neurospora crassa, barrage formation has not been thoroughly investigated. In addition to the previously described Standard Mating Reaction barrage, we identified at least three types of barrage in N. crassa; dark line, clear zone, and raised aggregate of hyphae. Barrage formation in N. crassa was evident only when paired mycelia were genetically different and only when confrontations were carried out on low nutrient growth media. Barrages were observed to occur in some cases between strains that were identical at all major heterokaryon incompatibility (het) loci and the mating-type locus, mat, which acts as a heterokaryon incompatibility locus during the vegetative phase of N. crassa. We also found examples where barrages did not form between strains that had genetic differences at het-6, het-c, and/or mat. Taken together, these results suggest that the genetic control of barrage formation in N. crassa can operate independently from that of heterokaryon incompatibility and mating type. Surprisingly, barrages were not observed to form when wild-collected strains of N. crassa were paired. However, an increase in the frequency of pairings that produced barrages was observed among strains obtained by back-crossing wild strains to laboratory strains, or through successive rounds of inbreeding of wild-derived strains, suggesting the presence in wild strains of genes that suppress barrage.


Assuntos
Variação Genética , Neurospora crassa/crescimento & desenvolvimento , Neurospora crassa/genética , Meios de Cultura , Células Híbridas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...