Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 8(9): 2055-2059, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28407469

RESUMO

We provide a consistent description of the electronic levels associated with localized and delocalized excess electrons in liquid water by combining hybrid-functional molecular dynamics simulations with a grand canonical formulation of solutes in aqueous solution. The excess electron localizes in a cavity with an average radius of 1.8 Å and a majority coordination of five water molecules. The vertical binding energy, the optical s-p transitions, and the adiabatic redox level are found to agree closely with their experimental counterparts. The energy level associated with electron delocalization V0 is inferred to lie at -0.97 eV with respect to the vacuum level.

2.
Phys Rev Lett ; 117(18): 186401, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835004

RESUMO

Self-consistent GW calculations with efficient vertex corrections are employed to determine the electronic structure of liquid water. Nuclear quantum effects are taken into account through ab initio path-integral molecular dynamics simulations. We reveal a sizable band-gap renormalization of up to 0.7 eV due to hydrogen-bond quantum fluctuations. Our calculations lead to a band gap of 8.9 eV, in accord with the experimental estimate. We further resolve the ambiguities in the band-edge positions of liquid water. The valence-band maximum and the conduction-band minimum are found at -9.4 and -0.5 eV with respect to the vacuum level, respectively.

3.
J Phys Chem B ; 120(30): 7456-70, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27404717

RESUMO

We study structural, dynamical, and electronic properties of liquid water through ab initio molecular dynamics (MD) simulations based on a hybrid functional which includes nonlocal van der Waals (vdW) interactions. The water dimer, the water hexamer, and two phases of ice are studied as benchmark cases. The hydrogen-bond energy depends on the balance between Fock exchange and vdW interactions. Moreover, the energetic competition between extended and compact structural motifs is found to be well described by theory provided vdW interactions are accounted for. Applied to the hydrogen-bond network of liquid water, the dispersion interactions favor more compact structural motifs, bring the density closer to the experimental value, and improve the agreement with experimental observables such as radial distribution functions. The description of the self-diffusion coefficient is also found to improve upon the combined consideration of Fock exchange and vdW interactions. The band gap and the band edges are found to agree with experiment within 0.1 eV.

4.
J Chem Theory Comput ; 12(8): 3456-62, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27434607

RESUMO

We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.

5.
J Chem Phys ; 142(3): 034501, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25612714

RESUMO

We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.

6.
J Chem Phys ; 143(24): 244508, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723693

RESUMO

We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H(+)/H2 level defining the standard hydrogen electrode, the OH(-)/OH(∗) level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH(∗) level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall good agreement with experiment.

7.
J Phys Condens Matter ; 26(49): 492202, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25372411

RESUMO

Through first-principles simulation methods, we assign the origin of Fermi-level pinning at GaAs surfaces and interfaces to the bistability between the As-As dimer and two As dangling bonds, which transform into each other upon charge trapping. This defect is shown to be naturally formed both at GaAs surfaces upon oxygen deposition and in the near-interface substoichiometric oxide. Using electron-counting arguments, we infer that the identified defect occurs in opposite charge states. The Fermi-level pinning then results from the amphoteric nature of this defect which drives the Fermi level to its defect level. These results account for the experimental characterization at both GaAs surfaces and interfaces within a unified picture, wherein the role of As antisites is elucidated.

8.
J Phys Chem Lett ; 4(24): 4241-6, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26296172

RESUMO

Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.

9.
Phys Rev Lett ; 103(12): 125901, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19792446

RESUMO

Based on the new ab initio molecular dynamics method by Kühne et al. [Phys. Rev. Lett. 98, 066401 (2007)10.1103/PhysRevLett.98.066401], we studied the mechanism of superionic conduction in substoichiometric Li-poor Li_{1+x}Al alloys by performing simulations at different temperatures for an overall simulation time of about 1 ns. The dynamical simulations revealed the microscopic path for the diffusion of Li vacancies. The calculated activation energy (0.11 eV) and the prefactor (D_{0} = 6.9 x 10;{-4} cm;{2}/s) for Li diffusivity via a vacancy-mediated mechanism are in good agreement with experimental NMR data. The calculation of the formation energies of different defects-Li and Al Frenkel pair and Li antisites-revealed that only Li;{+} vacancies and Li_{Al} antisites are present in the stability range of the Zintl phase -0.1 < x < 0.2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...