Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316259

RESUMO

In Escherichia coli, SigmaS (σS) is the master regulator of the general stress response. The cellular levels of σS are controlled by transcription, translation and protein stability. The turnover of σS, by the AAA+ protease (ClpXP), is tightly regulated by a dedicated adaptor protein, termed RssB (Regulator of Sigma S protein B)-which is an atypical member of the response regulator (RR) family. Currently however, the molecular mechanism of σS recognition and delivery by RssB is only poorly understood. Here we describe the crystal structures of both RssB domains (RssBN and RssBC) and the SAXS analysis of full-length RssB (both free and in complex with σS). Together with our biochemical analysis we propose a model for the recognition and delivery of σS by this essential adaptor protein. Similar to most bacterial RRs, the N-terminal domain of RssB (RssBN) comprises a typical mixed (ßα)5-fold. Although phosphorylation of RssBN (at Asp58) is essential for high affinity binding of σS, much of the direct binding to σS occurs via the C-terminal effector domain of RssB (RssBC). In contrast to most RRs the effector domain of RssB forms a ß-sandwich fold composed of two sheets surrounded by α-helical protrusions and as such, shares structural homology with serine/threonine phosphatases that exhibit a PPM/PP2C fold. Our biochemical data demonstrate that this domain plays a key role in both substrate interaction and docking to the zinc binding domain (ZBD) of ClpX. We propose that RssB docking to the ZBD of ClpX overlaps with the docking site of another regulator of RssB, the anti-adaptor IraD. Hence, we speculate that docking to ClpX may trigger release of its substrate through activation of a "closed" state (as seen in the RssB-IraD complex), thereby coupling adaptor docking (to ClpX) with substrate release. This competitive docking to RssB would prevent futile interaction of ClpX with the IraD-RssB complex (which lacks a substrate). Finally, substrate recognition by RssB appears to be regulated by a key residue (Arg117) within the α5 helix of the N-terminal domain. Importantly, this residue is not directly involved in σS interaction, as σS binding to the R117A mutant can be restored by phosphorylation. Likewise, R117A retains the ability to interact with and activate ClpX for degradation of σS, both in the presence and absence of acetyl phosphate. Therefore, we propose that this region of RssB (the α5 helix) plays a critical role in driving interaction with σS at a distal site.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas de Ligação a DNA/química , Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Chaperonas Moleculares/química , Mutação/genética , Fosforilação , Ligação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , Fator sigma/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Difração de Raios X
2.
Front Mol Biosci ; 2: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25988182

RESUMO

In Escherichia coli, σ(S) is the master regulator of the general stress response. The level of σ(S) changes in response to multiple stress conditions and it is regulated at many levels including protein turnover. In the absence of stress, σ(S) is rapidly degraded by the AAA+ protease, ClpXP in a regulated manner that depends on the adaptor protein RssB. This two-component response regulator mediates the recognition of σ(S) and its delivery to ClpXP. The turnover of σ(S) however, can be inhibited in a stress specific manner, by one of three anti-adaptor proteins. Each anti-adaptor binds to RssB and inhibits its activity, but how this is achieved is not fully understood at a molecular level. Here, we describe details of the interaction between each anti-adaptor and RssB that leads to the stabilization of σ(S). By defining the domains of RssB using partial proteolysis we demonstrate that each anti-adaptor uses a distinct mode of binding to inhibit RssB activity. IraD docks specifically to the N-terminal domain of RssB, IraP interacts primarily with the C-terminal domain, while IraM interacts with both domains. Despite these differences in binding, we propose that docking of each anti-adaptor induces a conformational change in RssB, which resembles the inactive dimer of RssB. This dimer-like state of RssB not only prevents substrate binding but also triggers substrate release from a pre-bound complex.

3.
Subcell Biochem ; 66: 105-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23479439

RESUMO

Maintaining correct cellular function is a fundamental biological process for all forms of life. A critical aspect of this process is the maintenance of protein homeostasis (proteostasis) in the cell, which is largely performed by a group of proteins, referred to as the protein quality control (PQC) network. This network of proteins, comprised of chaperones and proteases, is critical for maintaining proteostasis not only during favourable growth conditions, but also in response to stress. Indeed proteases play a crucial role in the clearance of unwanted proteins that accumulate during stress, but more importantly, in the activation of various different stress response pathways. In bacteria, the cells response to stress is usually orchestrated by a specific transcription factor (sigma factor). In Escherichia coli there are seven different sigma factors, each of which responds to a particular stress, resulting in the rapid expression of a specific set of genes. The cellular concentration of each transcription factor is tightly controlled, at the level of transcription, translation and protein stability. Here we will focus on the proteolytic regulation of two sigma factors (σ(32) and σ(S)), which control the heat and general stress response pathways, respectively. This review will also briefly discuss the role proteolytic systems play in the clearance of unwanted proteins that accumulate during stress.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteólise , Fator sigma/metabolismo , Estresse Fisiológico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...