Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21597, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517485

RESUMO

Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey. The venoms of specialists are often prey-specific and less complex than those of generalists, but their venom composition has not been studied in detail. Here, we investigated the venom of the prey-specialised white-tailed spiders (Lamponidae: Lampona), which utilise specialised morphological and behavioural adaptations to capture spider prey. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides < 10 kDa and 105 proteins > 10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Toxin-like proteins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be more potent against the preferred spider prey than against alternative cricket prey. In contrast, the venom of a related generalist was similarly potent against both prey types. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.


Assuntos
Venenos de Aranha , Aranhas , Animais , Aranhas/química , Venenos de Aranha/toxicidade , Venenos de Aranha/química , Comportamento Predatório , Adaptação Fisiológica , Peptídeos/toxicidade
2.
J Therm Biol ; 108: 103295, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36031216

RESUMO

Winter-active arthropod predators (like vegetation-dwelling spiders) significantly suppress pest populations during winter in pome fruit orchards in Central Europe. Clubiona spiders are very abundant in orchards and have been observed to be active during winter. Here, we performed laboratory experiments to assess the movement and predation activity of clubionids at low temperatures. In addition, we also assessed prey survival (psyllids and crickets). We revealed that Clubiona spiders actively moved even at a temperature below 0 °C. Pest prey (Cacopsylla sp.) was able to survive at low temperatures, but crickets died at 3 and -1 °C. Overall Clubiona activity was very low but present during the whole observation period of five days. The predation activity of Clubiona declined with lower temperatures for both cricket and pest (Cacopsylla sp.) prey. Nevertheless, 44% and 25% of Clubiona individuals captured and consumed psyllid and cricket prey, respectively, even at the lowest temperature of -1 °C. Our results show that Clubiona spiders are active predators at low temperatures and, therefore, should contribute to the suppression of overwintering pest populations.


Assuntos
Hemípteros , Aranhas , Animais , Controle de Pragas , Comportamento Predatório , Estações do Ano
3.
Database (Oxford) ; 20212021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34651181

RESUMO

Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology. Database URL:https://spidertraits.sci.muni.cz/.


Assuntos
Artrópodes , Aranhas , Animais , Bases de Dados Factuais , Ecossistema , Fenótipo , Aranhas/genética
4.
Sci Rep ; 10(1): 8683, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457437

RESUMO

Among spiders, taxonomically the most diversified group of terrestrial predators, only a few species are stenophagous and feed on ants. The levels of stenophagy and ant-specialisation vary among such species. To investigate whether stenophagy is only a result of a local specialisation both fundamental and realised trophic niches need to be estimated. Here we investigated trophic niches in three closely-related spider species from the family Gnaphosidae (Callilepis nocturna, C. schuszteri, Nomisia exornata) with different levels of myrmecophagy. Acceptance experiments were used to estimate fundamental trophic niches and molecular methods to estimate realised trophic niches. For the latter two PCR primer sets were used as these can affect the niche breadth estimates. The general invertebrate ZBJ primers were not appropriate for detecting ant DNA as they revealed very few prey types, therefore ant-specific primers were used. The cut-off threshold for erroneous MOTUs was identified as 0.005% of the total number of valid sequences, at individual predator level it was 0.05%. The fundamental trophic niche of Callilepis species included mainly ants, while that of N. exornata included many different prey types. The realised trophic niche in Callilepis species was similar to its fundamental niche but in N. exornata the fundamental niche was wider than realised niche. The results show that Callilepis species are ant-eating (specialised) stenophagous predators, catching mainly Formicinae ants, while N. exornata is an ant-eating euryphagous predator catching mainly Myrmicinae ants.


Assuntos
DNA/metabolismo , Aranhas/genética , Animais , Formigas/genética , Tamanho Corporal , Análise por Conglomerados , DNA/química , Reação em Cadeia da Polimerase , Comportamento Predatório , Aranhas/fisiologia
5.
Toxins (Basel) ; 11(12)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771158

RESUMO

The venom of predators should be under strong selection pressure because it is a costly substance and prey may potentially become resistant. Particularly in prey-specialized predators, venom should be selected for its high efficiency against the focal prey. Very effective venom paralysis has been observed in specialized predators, such as spiders preying on dangerous prey. Here, we compared the toxicity of the venoms of two prey-specialized species, araneophagous Palpimanus sp. and myrmecophagous Zodarion nitidum, and their related generalist species. We injected different venom concentrations into two prey types-the prey preferred by a specialist and an alternative prey-and observed the mortality and the paralysis of the prey within 24 h. We found that the venoms of specialists were far more potent towards the preferred prey than alternative prey. The venoms of generalists were similarly potent towards both prey types. In addition, we tested the efficacy of two venom fractions (smaller and larger than 10 kDa) in araneophagous Palpimanus sp. Compounds larger than 10 kDa paralyzed both prey types, but smaller compounds (<10 kDa) were effective only on preferred prey, suggesting the presence of prey-specific compounds in the latter fraction. Our results confirm that prey-specialized spiders possess highly specific venom that allows them to subdue dangerous prey.


Assuntos
Venenos de Aranha/toxicidade , Aranhas/química , Animais , Formigas , Ecossistema , Gryllidae , Dose Letal Mediana , Peso Molecular , Paralisia/induzido quimicamente , Comportamento Predatório , Especificidade da Espécie , Venenos de Aranha/química
6.
Sci Rep ; 9(1): 5386, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926825

RESUMO

Hunting other predators is dangerous, as the tables can turn and the hunter may become the hunted. Specialized araneophagic (spider eating) predators have evolved intriguing hunting strategies that allow them to invade spiders' webs by adopting a stealthy approach or using aggressive mimicry. Here, we present a newly discovered, specialized hunting strategy of the araneophagic spider Poecilochroa senilis (Araneae: Gnaphosidae), which forces its way into the silk retreat of the potential spider prey and immobilizes it by swathing gluey silk onto its forelegs and mouthparts. Poecilochroa senilis has been reported from the nests of a several, often large, spider species in the Negev desert (Israel), suggesting specialization on spiders as prey. Nevertheless, in laboratory experiments, we found that P. senilis has a wider trophic niche, and fed readily on several small insect species. The specialized nest-invading attack was used more frequently with large spiders, and even small juvenile P. senilis were able to attack and subdue larger spiders. Our observations show that specific hunting tactics, like nest usurpation, allow specialized predators to overcome defences of dangerous prey.


Assuntos
Comportamento Predatório , Aranhas/fisiologia , Animais
7.
Mol Ecol ; 27(21): 4257-4269, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187989

RESUMO

Specialized predators possess a variety of adaptations. In venomous predators, this may include the size of the venom gland and venom composition. It is expected that due to different foraging strategies, predators with a wide trophic niche (generalists) should possess larger venom glands that contain more diversified components than predators with a narrow niche (specialists). We focused on spiders, as the most diversified group of venomous predators, in which a wide variety of trophic strategies have evolved. We conducted a comparative analysis using 40 spider species, in which we measured the size of their venom gland and venom complexity using proteome profiling methods. The species were classified into three trophic groups: generalists, facultative specialists and obligatory specialists. We found that the venom glands of generalists are larger than those of obligatory specialists, which is presumably due to more frequent prey capture by the former. The complexity of venom of peptides (2-15 kDa) and proteins (15-250 kDa) was more diverse in generalists than in specialists. Multivariate analysis of venom revealed significant differences among the three trophic categories only in the complexity of peptides. Our study thus shows that venom gland size and its content have taken different pathways during the evolution of different trophic strategies in spiders. Generalists evolved larger venom glands with more complex composition, whereas obligatory specialists possess smaller glands with less diverse chemical structures.


Assuntos
Evolução Biológica , Proteoma/química , Venenos de Aranha/química , Aranhas/anatomia & histologia , Aranhas/classificação , Animais , Filogenia
8.
Ecol Evol ; 7(8): 2756-2766, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28428866

RESUMO

Specialist true predators are expected to exhibit higher capture efficiencies for the capture of larger and dangerous prey than generalist predators due to their possession of specialized morphological and behavioral adaptations. We used an araneophagous spider (Lampona murina) and a generalist spider (Drassodes lapidosus) as phylogenetically related model species and investigated their realized and fundamental trophic niches and their efficacy with respect to prey capture and prey handling. The trophic niche of both species confirmed that Lampona had a narrow trophic niche with a predominance of spider prey (including conspecifics), while the niche of Drassodes was wide, without any preference. DNA analysis of the gut contents of Lampona spiders collected in the field revealed that spiders form a significant part of its natural diet. Lampona captured significantly larger prey than itself and the prey captured by Drassodes. As concerns hunting strategy, Lampona grasped the prey with two pairs of legs possessing scopulae, whereas Drassodes immobilized prey with silk. Lampona possess forelegs equipped with scopulae and a thicker cuticle similar to other nonrelated araneophagous spiders. Lampona fed for a longer time and extracted more nutrients than Drassodes. We show that specialized behavioral and morphological adaptations altogether increase the hunting efficiency of specialists when compared to generalists.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...