Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2265-2268, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691695

RESUMO

Molecular tagging velocimetry is typically species specific and limited by excited state/species lifetimes. We utilize laser-generated ionization, long-lived anions, and a time-delayed microwave pulse to monitor the tagged region up to several milliseconds. This non-resonant excitation and microwave interaction is demonstrated in a range of gas mixtures. Signal levels show up to 1000-fold improvement, and the flexibility in interrogation time allows for velocity measurements over a large dynamic range (1-100 m/s) with single-shot precision of <5%. This approach has the potential for wide application over a range of relevant gas compositions, temperatures, and pressures.

2.
Front Genet ; 13: 901515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324515

RESUMO

The Philippines, with the recent discovery of an archaic hominin in Luzon and an extensive ethnolinguistic diversity of more than 100 Indigenous peoples, is crucial to understanding human evolution and population history in Island Southeast Asia. Advances in DNA sequencing technologies enable the rapid generation of genomic data to robustly address questions about origins, relatedness, and population movements. With the increased genetic sampling in the country, especially by international scientists, it is vital to revisit ethical rules and guidelines relevant to conducting research among Indigenous peoples. Our team led fieldwork expeditions between 2019 and February 2020 in Zamboanga and the Sulu Archipelago, a chain of islands connecting the Mindanao and Borneo landmasses. The trips concluded with a collection of 2,149 DNA samples from 104 field sites. We present our fieldwork experience among the mostly sea-oriented Sama-Bajaw and Tausug-speaking communities and propose recommendations to address the ethical challenges of conducting such research. This work contributes toward building an enabling research environment in the Philippines that respects the rights and autonomy of Indigenous peoples, who are the rightful owners of their DNA and all genetic information contained therein.

3.
ACS Appl Mater Interfaces ; 13(33): 39678-39688, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232011

RESUMO

This effort demonstrates the development of a novel, graphene oxide nanoscale thermite composite with thermally tunable microwave ignitability. A model thermite system containing nanoscale aluminum and nanoscale iron(II) oxide in a stoichiometric ratio (30/70 wt %) was combined with sheets of graphene oxide (GO) or reduced graphene oxide (rGO) using an immiscible two-fluid sonication and tape casting process. The samples were microwave irradiated within a single-mode resonant microwave cavity to determine the microwave ignition delay. Neat thermites were found to ignite after 4.34 s of microwave illumination, whereas 30 wt % rGO thermite composite ignition delay was an order of magnitude shorter (0.43 s). For most samples (4 of 6 trials), it was found that application of a 30 wt % GO coating inhibits microwave ignition of the thermite. Thermal treatment of the GO thermite composite led to switching of thermites from unignitable to ignitable with microwave field application as short as 0.24 s due to GO reduction. Optimum heat treatment time and GO content are explored with SEM, DSC/TGA-MS, Raman, and XPS deconvolution. This effort demonstrates the use of GO and rGO addition to achieve thermally switchable microwave ignitability to electromagnetically shield or enhance nanoscale energetic ignition by microwave energy.

4.
Opt Lett ; 46(13): 3288-3291, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197438

RESUMO

Supercontinuum laser absorption spectroscopy is applied to energetic material combustion fireball environments using the visible spectrum for temperature and column density measurements of key metal combustion intermediates TiO and AlO. Fireballs are produced by igniting metal/ammonium perchlorate powder beds on a thermal-jump apparatus. This work marks, to our knowledge, the first quantitative absorption measurement of TiO (B2Πr-X2Δr, Δv=0) and demonstrates the feasibility of broadband visible metal-oxide absorption thermometry at rates up to 100 kHz. We also demonstrate the capability for single laser-shot absorption measurements. The mean AlO (B2Σ+-X2Σ+, Δv=0) temperature is 3010 K, whereas TiO has a mean temperature of 2095 K; both agree well with previous literature. Typical signal-to-noise ratios for the TiO and AlO absorption spectra are 22. The 100 kHz measurement rate reveals the time dynamics of titanium combustion-illustrating the potential for broadband multispecies monitoring in dynamic fireball environments.

5.
Opt Lett ; 44(8): 2101-2104, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985821

RESUMO

The separation of liquid phase and vapor phase laser-induced fluorescence (LIF) signals using tracer species suffers from uncertainties in tracer-fuel coevaporation, as well as a disparity in liquid and vapor signals. This work demonstrates the use of a simple technique, referred to as lifetime-filtered LIF, to help separate the liquid and vapor signals of fuel sprays in oxygen-free environments without the use of added tracers. This is demonstrated for a common aviation fuel, Jet-A, using prompt detection of the liquid phase and time-delayed detection of the vapor phase. A scaled liquid signal subtraction algorithm is also demonstrated for removing vapor phase signal contamination caused by the largest droplets.

6.
Philos Trans A Math Phys Eng Sci ; 373(2048)2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26170432

RESUMO

The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles.

7.
Appl Opt ; 54(11): 3331-44, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967321

RESUMO

Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. To quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10-50 kHz. Guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.

8.
Opt Lett ; 39(4): 739-42, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562194

RESUMO

High-repetition-rate, burst-mode lasers can achieve higher energies per pulse compared with continuously pulsed systems, but the relatively few number of laser pulses in each burst has limited the temporal dynamic range of measurements in unsteady flames. A fivefold increase in the range of timescales that can be resolved by burst-mode laser-based imaging systems is reported in this work by extending a hybrid diode- and flashlamp-pumped Nd:YAG-based amplifier system to nearly 1000 pulses at 100 kHz during a 10 ms burst. This enables an unprecedented burst-mode temporal dynamic range to capture turbulent fluctuations from 0.1 to 50 kHz in flames of practical interest. High pulse intensity enables efficient conversion to the ultraviolet for planar laser-induced fluorescence imaging of nascent formaldehyde and other potential flame radicals.

9.
Appl Opt ; 50(26): 5158-62, 2011 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-21946998

RESUMO

Time-accurate velocity measurements in unseeded air are made by tagging nitrogen with a femtosecond-duration laser pulse and monitoring the displacement of the molecules with a time-delayed, fast-gated camera. Centimeter-long lines are written through the focal region of a ∼1 mJ, 810 nm laser and are produced by nonlinear excitation and dissociation of nitrogen. Negligible heating is associated with this interaction. The emission arises from recombining nitrogen atoms and lasts for tens of microseconds in natural air. It falls into the 560 to 660 nm spectral region and consists of multiple spectral lines associated with first positive nitrogen transitions. The feasibility of this concept is demonstrated with lines written across a free jet, yielding instantaneous and averaged velocity profiles. The use of high-intensity femtosecond pulses for flow tagging allows the accurate determination of velocity profiles with a single laser system and camera.

10.
Science ; 331(6016): 442-5, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21273482

RESUMO

The compelling need for standoff detection of hazardous gases and vapor indicators of explosives has motivated the development of a remotely pumped, high-gain air laser that produces lasing in the backward direction and can sample the air as the beam returns. We demonstrate that high gain can be achieved in the near-infrared region by pumping with a focused ultraviolet laser. The pumping mechanism is simultaneous resonant two-photon dissociation of molecular oxygen and resonant two-photon pumping of the atomic oxygen fragments. The high gain from the millimeter-length focal zone leads to equally strong lasing in the forward and backward directions. Further backward amplification is achieved with the use of earlier laser spark dissociation. Low-divergence backward air lasing provides possibilities for remote detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...