Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 530: 95-107, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619768

RESUMO

Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC) are considered a major site of leptin action. Due to increasing evidence that POMC neurons are highly heterogeneous and indications that the conventional molecular tools to study their functions have important limitations, a reassessment of leptin's effects on definitive POMC neurons is needed. POMC neurons are also expressed in the retrochiasmatic area (RCA), where their function is poorly understood. Furthermore, the response of POMC neurons to leptin in females is largely unknown. Therefore, the present study aimed to determine the differences in leptin responsiveness of POMC neurons in the ARC and the RCA using a mouse model allowing adult-inducible fluorescent labeling. We performed whole-cell patch clamp electrophysiology on 154 POMC neurons from male and female mice. We confirmed and extended the model by which leptin depolarizes POMC neurons, in both the ARC and the RCA. Furthermore, we characterized the electrophysiological properties of an underappreciated subpopulation representing ∼10% of hypothalamic POMC neurons that are inhibited by leptin. We also provide evidence that sex does not appear to be a major determinant of basal properties and leptin responsiveness of POMC neurons, but that females are overall less responsive to leptin compared to males.

2.
J Pharm Sci ; 112(9): 2412-2418, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37390868

RESUMO

Durvalumab is a monoclonal antibody approved for the treatment of lung, urothelial and biliary tract cancers. Durvalumab is supplied in vials as a solution containing no preservatives. Monographs recommend single use of durvalumab vials, and that any leftovers be discarded within 24 h. Thus, significant portions of unused product from opened vials are wasted on a daily basis, generating considerable financial losses. The objective of the present study was to assess the physicochemical and microbiological stability of durvalumab vials kept at 4 °C or room temperature, at 7 and 14 days after opening. Following pH and osmolality measurements, turbidity and submicronic aggregation of durvalumab solution were evaluated by spectrophotometry and dynamic light scattering, respectively. Moreover, steric exclusion high performance liquid chromatography (SE-HPLC), ion exchange HPLC (IEX-HPLC) and peptide mapping HPLC were used to respectively assess aggregation/fragmentation, charge distribution and primary structure of durvalumab. Microbiological stability of durvalumab was evaluated by incubation of vial leftovers on blood agar. All experiments showed physicochemical and microbiological stability of durvalumab vial leftovers for at least 14 days when aseptically handled and kept at either 4 °C or at room temperature. These results suggest the possible extension of utilization of durvalumab vial leftovers well beyond 24 h.


Assuntos
Anticorpos Monoclonais , Embalagem de Medicamentos , Embalagem de Medicamentos/métodos , Espectrofotometria , Vidro/química , Estabilidade de Medicamentos , Armazenamento de Medicamentos
3.
Adv Exp Med Biol ; 1427: 61-71, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322336

RESUMO

Sleep apnea (SA) is a major respiratory disorder with increased risk for hypertension and obesity; however, our understanding of the origins of this complex disorder remains limited. Because apneas lead to recurrent drops in O2 during sleep, intermittent hypoxia (IH) is the main animal model to explore the pathophysiology of SA. Here, we assessed the impacts of IH on metabolic function and related signals. Adult male rats were exposed to 1 week of moderate IH (FiO2 = 0.10-30 s, ten cycles/hour, 8 h/day). Using whole-body plethysmography, we measured respiratory variability and apnea index during sleep. Blood pressure and heart rate were measured by the tail-cuff method; blood samples were taken for multiplex assay. At rest, IH augmented arterial blood pressure, respiratory instability, but not apnea index. IH induced weight, fat, and fluid loss. IH also reduced food intake and plasma leptin, adrenocorticotropic hormone (ACTH), and testosterone levels but increased inflammatory cytokines. We conclude that IH does not replicate the metabolic clinical features of SA patient, thus raising our awareness of the limitations of the IH model. The fact that the risk for hypertension occurs before the appearance of apneas provides new insights into the progression of the disease.


Assuntos
Hipertensão , Síndromes da Apneia do Sono , Masculino , Ratos , Animais , Hipóxia , Hipertensão/etiologia , Redução de Peso , Fenótipo
4.
Am J Physiol Endocrinol Metab ; 321(1): E146-E155, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34097543

RESUMO

Cannabinoid 1 receptor (CB1R) inverse agonists reduce body weight and improve several parameters of glucose homeostasis. However, these drugs have also been associated with deleterious side effects. CB1R expression is widespread in the brain and in peripheral tissues, but whether specific sites of expression can mediate the beneficial metabolic effects of CB1R drugs, while avoiding the untoward side effects, remains unclear. Evidence suggests inverse agonists may act on key sites within the central nervous system to improve metabolism. The ventromedial hypothalamus (VMH) is a critical node regulating energy balance and glucose homeostasis. To determine the contributions of CB1Rs expressed in VMH neurons in regulating metabolic homeostasis, we generated mice lacking CB1Rs in the VMH. We found that the deletion of CB1Rs in the VMH did not affect body weight in chow- and high-fat diet-fed male and female mice. We also found that deletion of CB1Rs in the VMH did not alter weight loss responses induced by the CB1R inverse agonist SR141716. However, we did find that CB1Rs of the VMH regulate parameters of glucose homeostasis independent of body weight in diet-induced obese male mice.NEW & NOTEWORTHY Cannabinoid 1 receptors (CB1Rs) regulate metabolic homeostasis, and CB1R inverse agonists reduce body weight and improve parameters of glucose metabolism. However, the cell populations expressing CB1Rs that regulate metabolic homeostasis remain unclear. CB1Rs are highly expressed in the ventromedial hypothalamic nucleus (VMH), which is a crucial node that regulates metabolism. With CRISPR/Cas9, we generated mice lacking CB1Rs specifically in VMH neurons and found that CB1Rs in VMH neurons are essential for the regulation of glucose metabolism independent of body weight regulation.


Assuntos
Peso Corporal/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Neurônios/metabolismo , Receptor CB1 de Canabinoide/fisiologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Composição Corporal/fisiologia , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dieta Hiperlipídica , Metabolismo Energético/fisiologia , Feminino , Edição de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Receptor CB1 de Canabinoide/deficiência , Receptor CB1 de Canabinoide/genética
5.
Neuroscience ; 451: 164-173, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002557

RESUMO

Long chain fatty acids (LCFAs) have been suggested to influence the activity of hypothalamic neurons, however, limited studies have attempted to identify the neurochemical phenotype of these neurons. We aimed to determine if physiological levels of LCFAs alter the electrical excitability of pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus. We utilised whole-cell patch-clamp electrophysiology on brain slice preparations from genetic mouse models where green fluorescent protein was expressed in either POMC or NPY expressing cells. All animals had undergone an overnight fast to replicate conditions in which fatty acids would usually increase. Bath application of LCFAs were found to predominantly inhibit POMC neurons and predominantly excite NPY neurons. Differences between oleic and palmitic acid were not observed. These results suggest that LCFAs in the cerebrospinal fluid exert an underlying orexigenic tone to key hypothalamic neurons known to regulate energy homeostasis.


Assuntos
Neuropeptídeo Y , Pró-Opiomelanocortina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Ácidos Graxos , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo
6.
J Clin Invest ; 130(9): 4540-4542, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32804153

RESUMO

Orexin/hypocretin neurons located in the lateral hypothalamus play a critical role in the maintenance of arousal and contribute to the regulation of multiple homeostatic and behavioral processes. In this issue of the JCI, Tan and Hang et al. report that feeding a high-fat diet to mice compromised the function of the orexin system, leading to impairments in reward-seeking and active coping mechanisms. The researchers observed changes at the cellular and circuit levels suggesting that reduced excitability of orexin neurons affects behavior through induction of a hypoarousal state.


Assuntos
Neuropeptídeos , Animais , Nível de Alerta , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Obesos , Neurônios , Neuropeptídeos/genética , Obesidade , Orexinas , Recompensa
7.
Neuroscience ; 444: 183-195, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32599122

RESUMO

Histaminergic neurons of the tuberomammillary nucleus (TMN) are important regulators of behavioral and homeostatic processes. Previous work suggested that histaminergic neurons exhibit a characteristic electrophysiological signature, allowing for their identification in brain slice preparations. However, these previous investigations focused on neurons in the ventral subregion of the TMN of rats. Consequently, it remains unclear whether such electrophysiological properties extend to mice, including other subregions of the TMN, and the potential for differences between males and females. To further characterize the electrophysiological properties of histaminergic neurons, we performed whole-cell patch-clamp recordings on transgenic mice expressing Cre recombinase in histidine decarboxylase (HDC)-expressing cells; the sole enzyme for histamine synthesis (Hdc-cre::tdTomato). Despite similarities with the electrophysiological properties reported in rats, we observed considerable variability in mouse HDC neuron passive membrane properties, action potential firing, and intrinsic subthreshold active membrane properties. Overall, the electrophysiological properties of HDC neurons appeared similar across subregions of the TMN, consistent with a lack of topographical organization in this nucleus. Moreover, we found no obvious sex differences in the electrical excitability of HDC neurons. However, our data reveal a diversity in the electrophysiological properties of genetically identified histaminergic neurons from mice not previously appreciated from rat studies. Thus, these data highlight the utility of mouse genetics to target the widespread histaminergic neuronal population within the TMN and support the idea that histaminergic neurons are a heterogeneous neuronal population.


Assuntos
Histamina , Região Hipotalâmica Lateral , Animais , Feminino , Histidina Descarboxilase/genética , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos
8.
Mol Metab ; 35: 100956, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244183

RESUMO

OBJECTIVE: Histaminergic neurons of the tuberomammillary nucleus (TMN) are wake-promoting and contribute to the regulation of energy homeostasis. Evidence indicates that melanocortin 4 receptors (MC4R) are expressed within the TMN. However, whether the melanocortin system influences the activity and function of TMN neurons expressing histidine decarboxylase (HDC), the enzyme required for histamine synthesis, remains undefined. METHODS: We utilized Hdc-Cre mice in combination with whole-cell patch-clamp electrophysiology and in vivo chemogenetic techniques to determine whether HDC neurons receive metabolically relevant information via the melanocortin system. RESULTS: We found that subsets of HDC-expressing neurons were excited by melanotan II (MTII), a non-selective melanocortin receptor agonist. Use of melanocortin receptor selective agonists (THIQ, [D-Trp8]-γ-MSH) and inhibitors of synaptic transmission (TTX, CNQX, AP5) indicated that the effect was mediated specifically by MC4Rs and involved a glutamatergic dependent presynaptic mechanism. MTII enhanced evoked excitatory post-synaptic currents (EPSCs) originating from electrical stimulation of the perifornical lateral hypothalamic area (PeFLH), supportive of melanocortin effects on the glutamatergic PeFLH projection to the TMN. Finally, in vivo chemogenetic inhibition of HDC neurons strikingly enhanced the anorexigenic effects of intracerebroventricular administration of MTII, suggesting that MC4R activation of histaminergic neurons may restrain the anorexigenic effects of melanocortin system activation. CONCLUSIONS: These experiments identify a functional interaction between the melanocortin and histaminergic systems and suggest that HDC neurons act naturally to restrain the anorexigenic effect of melanocortin system activation. These findings may have implications for the control of arousal and metabolic homeostasis, especially in the context of obesity, in which both processes are subjected to alterations.


Assuntos
Histamina/metabolismo , Histidina Descarboxilase/metabolismo , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/metabolismo , Melanocortinas/metabolismo , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Histidina Descarboxilase/genética , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/genética , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
9.
Mol Metab ; 34: 54-71, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180560

RESUMO

OBJECTIVES: Nutrient sensing by hypothalamic neurons is critical for the regulation of food intake and energy expenditure. We aimed to identify long- and medium-chain fatty acid species transported into the brain, their effects on energy balance, and the mechanisms by which they regulate activity of hypothalamic neurons. METHODS: Simultaneous blood and cerebrospinal fluid (CSF) sampling was undertaken in rats and metabolic analyses using radiolabeled fatty acid tracers were performed on mice. Electrophysiological recording techniques were used to investigate signaling mechanisms underlying fatty acid-induced changes in activity of pro-opiomelanocortin (POMC) neurons. RESULTS: Medium-chain fatty acid (MCFA) octanoic acid (C8:0), unlike long-chain fatty acids, was rapidly transported into the hypothalamus of mice and almost exclusively oxidized, causing rapid, transient reductions in food intake and increased energy expenditure. Octanoic acid differentially regulates the excitability of POMC neurons, activating these neurons directly via GPR40 and inducing inhibition via an indirect non-synaptic, purine, and adenosine receptor-dependent mechanism. CONCLUSIONS: MCFA octanoic acid is a central signaling nutrient that targets POMC neurons via distinct direct and indirect signal transduction pathways to instigate changes in energy status. These results could explain the beneficial health effects that accompany MCFA consumption.


Assuntos
Caprilatos/metabolismo , Metabolismo Energético , Neurônios/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
10.
Mol Metab ; 28: 120-134, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31446151

RESUMO

OBJECTIVE: The long-acting glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, stimulates insulin secretion and efficiently suppresses food intake to reduce body weight. As such, liraglutide is growing in popularity in the treatment of diabetes and chronic weight management. Within the brain, liraglutide has been shown to alter the activity of hypothalamic proopiomelanocortin (POMC) and Neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons. Moreover, the acute activities of POMC and NPY neurons have been directly linked to feeding behavior, body weight, and glucose metabolism. Despite the increased usage of liraglutide and other GLP-1 analogues as diabetic and obesity interventions, the cellular mechanisms by which liraglutide alters the activity of metabolically relevant neuronal populations are poorly understood. METHODS: In order to resolve this issue, we utilized neuron-specific transgenic mouse models to identify POMC and NPY neurons for patch-clamp electrophysiology experiments. RESULTS: We found that liraglutide directly activated arcuate POMC neurons via TrpC5 channels, sharing a similar mechanistic pathway to the adipose-derived peptide leptin. Liraglutide also indirectly increases excitatory tone to POMC neurons. In contrast, liraglutide inhibited NPY/AgRP neurons through post-synaptic GABAA receptors and enhanced activity of pre-synaptic GABAergic neurons, which required both TrpC5 subunits and K-ATP channels. In support of an additive role of leptin and liraglutide in suppressing food intake, leptin potentiated the acute effects of liraglutide to activate POMC neurons. TrpC5 subunits in POMC neurons were also required for the intact pharmacological effects of liraglutide on food intake and body weight. Thus, the current study adds to recent work from our group and others, which highlight potential mechanisms to amplify the effects of GLP-1 agonists in vivo. Moreover, these data highlight multiple sites of action (both pre- and post-synaptic) for GLP-1 agonists on this circuit. CONCLUSIONS: Taken together, our results identify critical molecular mechanisms linking GLP-1 analogues in arcuate POMC and NPY/AgRP neurons with metabolism.


Assuntos
Proteína Relacionada com Agouti/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Hipotálamo/efeitos dos fármacos , Liraglutida/farmacologia , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/antagonistas & inibidores , Pró-Opiomelanocortina/antagonistas & inibidores , Proteína Relacionada com Agouti/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo
11.
Mol Metab ; 27: 11-21, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31279640

RESUMO

OBJECTIVE: The sympathetic nervous system (SNS) is a key regulator of the metabolic and endocrine functions of adipose tissue. Increased SNS outflow promotes fat mobilization, stimulates non-shivering thermogenesis, promotes browning, and inhibits leptin production. Most of these effects are attributed to norepinephrine activation of the Gs-coupled beta adrenergic receptors located on the surface of the adipocytes. Evidence suggests that other adrenergic receptor subtypes, including the Gi-coupled alpha 2 adrenergic receptors might also mediate the SNS effects on adipose tissue. However, the impact of acute stimulation of adipocyte Gs and Gi has never been reported. METHODS: We harness the power of chemogenetics to develop unique mouse models allowing the specific and spatiotemporal stimulation of adipose tissue Gi and Gs signaling. We evaluated the impact of chemogenetic stimulation of these pathways on glucose homeostasis, lipolysis, leptin production, and gene expression. RESULTS: Stimulation of Gs signaling in adipocytes induced rapid and sustained hypoglycemia. These hypoglycemic effects were secondary to increased insulin release, likely consequent to increased lipolysis. Notably, we also observed differences in gene regulation and ex vivo lipolysis in different adipose depots. In contrast, acute stimulation of Gi signaling in adipose tissue did not affect glucose metabolism or lipolysis, but regulated leptin production. CONCLUSION: Our data highlight the significance of adipose Gs signaling in regulating systemic glucose homeostasis. We also found previously unappreciated heterogeneity across adipose depots following acute stimulation. Together, these results highlight the complex interactions of GPCR signaling in adipose tissue and demonstrate the usefulness of chemogenetic technology to better understand adipocyte function.


Assuntos
Adipócitos/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Glucose/metabolismo , Hipoglicemia/metabolismo , Animais , Homeostase , Insulina/metabolismo , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
12.
Elife ; 72018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30230471

RESUMO

Hypothalamic neurons respond to nutritional cues by altering gene expression and neuronal excitability. The mechanisms that control such adaptive processes remain unclear. Here we define populations of POMC neurons in mice that are activated or inhibited by insulin and thereby repress or inhibit hepatic glucose production (HGP). The proportion of POMC neurons activated by insulin was dependent on the regulation of insulin receptor signaling by the phosphatase TCPTP, which is increased by fasting, degraded after feeding and elevated in diet-induced obesity. TCPTP-deficiency enhanced insulin signaling and the proportion of POMC neurons activated by insulin to repress HGP. Elevated TCPTP in POMC neurons in obesity and/or after fasting repressed insulin signaling, the activation of POMC neurons by insulin and the insulin-induced and POMC-mediated repression of HGP. Our findings define a molecular mechanism for integrating POMC neural responses with feeding to control glucose metabolism.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipotálamo/citologia , Insulina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/genética , Pró-Opiomelanocortina/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
14.
Cell Metab ; 26(2): 375-393.e7, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768176

RESUMO

Beige adipocytes can interconvert between white and brown-like states and switch between energy storage versus expenditure. Here we report that beige adipocyte plasticity is important for feeding-associated changes in energy expenditure and is coordinated by the hypothalamus and the phosphatase TCPTP. A fasting-induced and glucocorticoid-mediated induction of TCPTP, inhibited insulin signaling in AgRP/NPY neurons, repressed the browning of white fat and decreased energy expenditure. Conversely feeding reduced hypothalamic TCPTP, to increase AgRP/NPY neuronal insulin signaling, white adipose tissue browning and energy expenditure. The feeding-induced repression of hypothalamic TCPTP was defective in obesity. Mice lacking TCPTP in AgRP/NPY neurons were resistant to diet-induced obesity and had increased beige fat activity and energy expenditure. The deletion of hypothalamic TCPTP in obesity restored feeding-induced browning and increased energy expenditure to promote weight loss. Our studies define a hypothalamic switch that coordinates energy expenditure with feeding for the maintenance of energy balance.


Assuntos
Ingestão de Alimentos/psicologia , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/biossíntese , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Obesidade/genética , Obesidade/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...