Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nitric Oxide ; 6(2): 160-7, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11890740

RESUMO

We recently reported that following a toxic dose of acetaminophen to mice, tyrosine nitration occurs in the protein of cells that become necrotic. Nitration of tyrosine is by peroxynitrite, a species formed from nitric oxide (NO) and superoxide. In this manuscript we studied the effects of the NO synthase inhibitors N-monomethyl-l-arginine (l-NMMA), N-nitro-l-arginine methyl ester (NAME), l-N-(1-iminoethyl)lysine (l-NIL), and aminoguanidine on acetaminophen hepatotoxicity. Acetaminophen (300 mg/kg) increased serum nitrate/nitrite and alanine aminotransferase (ALT) levels, indicating increased NO synthesis and liver necrosis, respectively. None of the NO synthase inhibitors reduced serum ALT levels. In fact, l-NMMA, l-NIL, and aminoguanidine significantly augmented acetaminophen hepatotoxicity at 4 h. A detailed time course indicated that aminoguanidine (15 mg/kg at 0 h and 15 mg/kg at 2 h) significantly increased serum ALT levels over that for acetaminophen alone at 2 and 4 h; however, at 6 and 8 h serum ALT levels in the two groups were identical. At 2 h following acetaminophen plus aminoguanidine NO synthesis was significantly increased; however, at 4, 6, and 8 h NO synthesis was significantly decreased. Aminoguanidine also decreased acetaminophen-induced nitration of tyrosine. Acetaminophen alone did not induce lipid peroxidation, but acetaminophen plus aminoguanidine significantly increased hepatic lipid peroxidation (malondialdehyde levels) at 2, 4, and 6 h. These data are consistent with NO having a critical role in controlling superoxide-mediated lipid peroxidation in acetaminophen hepatotoxicity. Thus, acetaminophen hepatotoxicity may be mediated by either lipid peroxidation or by peroxynitrite.


Assuntos
Acetaminofen/toxicidade , Alanina Transaminase/sangue , Inibidores Enzimáticos/farmacologia , Fígado/efeitos dos fármacos , Lisina/análogos & derivados , Óxido Nítrico Sintase/antagonistas & inibidores , Analgésicos não Narcóticos/toxicidade , Animais , Interações Medicamentosas , Guanidinas/farmacologia , Fígado/citologia , Lisina/farmacologia , Masculino , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/sangue , Óxido Nítrico Sintase/metabolismo , ômega-N-Metilarginina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...