Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medchemcomm ; 9(12): 2083-2090, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30746066

RESUMO

A series of compounds containing a 1,2,4-triazole moiety were synthesized, targeting the somatostatin receptor subtype-4 (sst4). Compounds were developed in which the Phe6/Phe7/Phe11, Trp8, and Lys9 mimetic groups were interchanged at positions 3, 4, and 5 of the 1,2,4-triazole ring. The 1,2,4-triazoles containing an 2-(imidazol-4-yl)ethyl substituent at position-3 demonstrated moderate binding affinity at sst4. 1,2,4-Triazoles containing an (indol-3-yl)methyl substituent at position-5 lacked affinity at sst4. The 1,2,4-triazoles containing an aminopropyl group at position-4 showed enhanced binding affinity compared to the 3-position. One compound with an 3-(imidazol-4-yl)propyl group at position-4 (compound 44) imparted high affinity and selectivity at sst4 (sst2A = >10 000 nM; sst4 = 19 nM), acting as an agonist (EC50 = 6.8 nM). Docking 44 into a model-built structure of sst4 pointed to differences in its binding versus the other low-affinity compounds and was also in line with one of the two previously reported binding modes. A virtual screening (VS) experiment, employing two separate docking algorithms, was able to score 44 among the top-ranked poses. In summary, compound 44 represents a novel and promising lead structure towards the development of a clinically viable sst4 agonist for the treatment of conditions ranging from Alzheimer's disease to chronic pain.

2.
Eur J Med Chem ; 36(3): 265-86, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11337105

RESUMO

Using N-(2,6-dimethyl)phenyl-2-piperidinecarboxamide (1) and N-(alpha-methylbenzyl)-2-piperidinecarboxamide (2) as structural leads, a variety of analogues were synthesised and evaluated for anticonvulsant activity in the MES test in mice. In the N-benzyl series, introduction of 3-Cl, 4-Cl, 3,4-Cl2, or 3-CF3 groups on the aromatic ring led to an increase in MES activity. Replacement of the alpha-methyl group by either i-Pr or benzyl groups enhanced MES activity with no increase in neurotoxicity. Substitution on the piperidine ring nitrogen led to a decrease in MES activity and neurotoxicity, while reduction of the amide carbonyl led to a complete loss of activity. Movement of the carboxamide group to either the 3- or 4-positions of the piperidine ring decreased MES activity and neurotoxicity. Incorporation of the piperidine ring into a tetrahydroisoquinoline or diazahydrinone nucleus led to increased neurotoxicity. In the N-(2,6-dimethyl)phenyl series, opening of the piperidine ring between the 1- and 6-positions gave the active norleucine derivative 75 (ED50=5.8 mgkg(-1), TD50 =36.4 mgkg(-1), PI=6.3). Replacement of the piperidine ring of 1 by cycloalkane (cyclohexane, cyclopentane, and cyclobutane) resulted in compounds with decreased MES activity and neurotoxicity, whereas replacement of the piperidine ring by a 4-pyridyl group led to a retention of MES activity with a comparable PI. Simplification of the 2-piperidinecarboxamide nucleus of 1 into a glycinecarboxamide nucleus led to about a six-fold decrease in MES activity. The 2,6-dimethylanilides were the most potent compounds in the MES test in each group of compounds evaluated, and compounds 50 and 75 should be useful leads in the development of agents for the treatment of tonic-clonic and partial seizures in man.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Piridinas/farmacologia , Animais , Anticonvulsivantes/síntese química , Ácidos Carboxílicos/química , Avaliação Pré-Clínica de Medicamentos , Camundongos , Piperidinas/síntese química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...