Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Katharine Sherratt; Hugo Gruson; Rok Grah; Helen Johnson; Rene Niehus; Bastian Prasse; Frank Sandman; Jannik Deuschel; Daniel Wolffram; Sam Abbott; Alexander Ullrich; Graham Gibson; Evan L Ray; Nicholas G Reich; Daniel Sheldon; Yijin Wang; Nutcha Wattanachit; Lijing Wang; Jan Trnka; Guillaume Obozinski; Tao Sun; Dorina Thanou; Loic Pottier; Ekaterina Krymova; Maria Vittoria Barbarossa; Neele Leithauser; Jan Mohring; Johanna Schneider; Jaroslaw Wlazlo; Jan Fuhrmann; Berit Lange; Isti Rodiah; Prasith Baccam; Heidi Gurung; Steven Stage; Bradley Suchoski; Jozef Budzinski; Robert Walraven; Inmaculada Villanueva; Vit Tucek; Martin Smid; Milan Zajicek; Cesar Perez Alvarez; Borja Reina; Nikos I Bosse; Sophie Meakin; Pierfrancesco Alaimo Di Loro; Antonello Maruotti; Veronika Eclerova; Andrea Kraus; David Kraus; Lenka Pribylova; Bertsimas Dimitris; Michael Lingzhi Li; Soni Saksham; Jonas Dehning; Sebastian Mohr; Viola Priesemann; Grzegorz Redlarski; Benjamin Bejar; Giovanni Ardenghi; Nicola Parolini; Giovanni Ziarelli; Wolfgang Bock; Stefan Heyder; Thomas Hotz; David E. Singh; Miguel Guzman-Merino; Jose L Aznarte; David Morina; Sergio Alonso; Enric Alvarez; Daniel Lopez; Clara Prats; Jan Pablo Burgard; Arne Rodloff; Tom Zimmermann; Alexander Kuhlmann; Janez Zibert; Fulvia Pennoni; Fabio Divino; Marti Catala; Gianfranco Lovison; Paolo Giudici; Barbara Tarantino; Francesco Bartolucci; Giovanna Jona Lasinio; Marco Mingione; Alessio Farcomeni; Ajitesh Srivastava; Pablo Montero-Manso; Aniruddha Adiga; Benjamin Hurt; Bryan Lewis; Madhav Marathe; Przemyslaw Porebski; Srinivasan Venkatramanan; Rafal Bartczuk; Filip Dreger; Anna Gambin; Krzysztof Gogolewski; Magdalena Gruziel-Slomka; Bartosz Krupa; Antoni Moszynski; Karol Niedzielewski; Jedrzej Nowosielski; Maciej Radwan; Franciszek Rakowski; Marcin Semeniuk; Ewa Szczurek; Jakub Zielinski; Jan Kisielewski; Barbara Pabjan; Kirsten Holger; Yuri Kheifetz; Markus Scholz; Marcin Bodych; Maciej Filinski; Radoslaw Idzikowski; Tyll Krueger; Tomasz Ozanski; Johannes Bracher; Sebastian Funk.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276024

RESUMO

BackgroundShort-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. MethodsWe used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models past predictive performance. ResultsOver 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 84% of participating models forecasts of incident cases (with a total N=862), and 92% of participating models forecasts of deaths (N=746). Across a one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. ConclusionsOur results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two weeks. Code and data availabilityAll data and code are publicly available on Github: covid19-forecast-hub-europe/euro-hub-ensemble.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273656

RESUMO

Since December 2019, the world has been ravaged by the COVID-19 pandemic, with over 150 million confirmed cases and 3 million confirmed deaths worldwide. To combat the spread of COVID-19, governments have issued unprecedented non-pharmaceutical interventions (NPIs), ranging from mass gathering restrictions to complete lockdowns. Despite their proven effectiveness in reducing virus transmission, the policies often carry significant economic and humanitarian cost, ranging from unemployment to depression, PTSD, and anxiety. In this paper, we create a data-driven system dynamics framework, THEMIS, that allows us to compare the costs and benefits of a large class of NPIs in any geographical region across different cost dimensions. As a demonstration, we analyzed thousands of alternative policies across 5 countries (United States, Germany, Brazil, Singapore, Spain) and compared with the actual implemented policy. Our results show that moderate NPIs (such as restrictions on mass gatherings) usually produce the worst results, incurring significant cost while unable to sufficiently slow down the pandemic to prevent the virus from becoming endemic. Short but severe restrictions (complete lockdown for 4-5 weeks) generally produced the best results for developed countries, but only if the speed of reopening is slow enough to prevent a resurgence. Developing countries exhibited very different trade-off profiles from developed countries, and suggests that severe NPIs such as lockdowns might not be as suitable for developing countries in general.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248826

RESUMO

We report insights from ten weeks of collaborative COVID-19 forecasting for Germany and Poland (12 October - 19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20233213

RESUMO

The outbreak of COVID-19 has spurred extensive research worldwide to develop a vaccine. However, when a vaccine becomes available, limited production and distribution capabilities will likely lead to another challenge: who to prioritize for vaccination to mitigate the near-end impact of the pandemic? To tackle that question, this paper first expands a state-of-the-art epidemiological model, called DELPHI, to capture the effects of vaccinations and the variability in mortality rates across subpopulations. It then integrates this predictive model into a prescriptive model to optimize vaccine allocation, formulated as a bilinear, non-convex optimization model. To solve it, this paper proposes a coordinate descent algorithm that iterates between optimizing vaccine allocations and simulating the dynamics of the pandemic. We implement the model and algorithm using real-world data in the United States. All else equal, the optimized vaccine allocation prioritizes states with a large number of projected cases and sub-populations facing higher risks (e.g., older ones). Ultimately, the optimized vaccine allocation can reduce the death toll of the pandemic by an estimated 10-25%, or 10,000-20,000 deaths over a three-month period in the United States alone. Highlights- This paper formulates an optimization model for vaccine allocation in response to the COVID-19 pandemic. This model, referred to as DELPHI-V-OPT, integrates a predictive epidemiological model into a prescriptive model to support the allocation of vaccines across geographic regions (e.g., US states) and across risk classes (e.g., age groups). - This paper develops a scalable coordinate descent algorithm to solve the DELPHI-V-OPT model. The proposed algorithm converges effectively and in short computational times. Therefore, the proposed approach can be implemented efficiently, and allows extensive sensitivity analyses for scenario planning and policy analysis. - Computational results demonstrate that optimized vaccine allocation strategies can curb the death toll of the COVID-19 pandemic by an estimated at 10-25%, or 10,000-20,000 deaths over a three-month period in the United States alone. These results highlight the critical role of vaccine allocation to combat the COVID-19 pandemic, in addition to vaccine design and vaccine production.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20177493

RESUMO

BackgroundThe COVID-19 pandemic has driven demand for forecasts to guide policy and planning. Previous research has suggested that combining forecasts from multiple models into a single "ensemble" forecast can increase the robustness of forecasts. Here we evaluate the real-time application of an open, collaborative ensemble to forecast deaths attributable to COVID-19 in the U.S. MethodsBeginning on April 13, 2020, we collected and combined one- to four-week ahead forecasts of cumulative deaths for U.S. jurisdictions in standardized, probabilistic formats to generate real-time, publicly available ensemble forecasts. We evaluated the point prediction accuracy and calibration of these forecasts compared to reported deaths. ResultsAnalysis of 2,512 ensemble forecasts made April 27 to July 20 with outcomes observed in the weeks ending May 23 through July 25, 2020 revealed precise short-term forecasts, with accuracy deteriorating at longer prediction horizons of up to four weeks. At all prediction horizons, the prediction intervals were well calibrated with 92-96% of observations falling within the rounded 95% prediction intervals. ConclusionsThis analysis demonstrates that real-time, publicly available ensemble forecasts issued in April-July 2020 provided robust short-term predictions of reported COVID-19 deaths in the United States. With the ongoing need for forecasts of impacts and resource needs for the COVID-19 response, the results underscore the importance of combining multiple probabilistic models and assessing forecast skill at different prediction horizons. Careful development, assessment, and communication of ensemble forecasts can provide reliable insight to public health decision makers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...