Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266115

RESUMO

Rhinoviruses (RV) and inhaled allergens, such as house dust mite (HDM) are the major agents responsible for asthma onset, exacerbations and progression to the severe disease, but the mechanisms of these pathogenic reciprocal virus-allergen interactions are not well understood. To address this, we analyzed mechanisms of airway epithelial sensing and response to RV infection using controlled experimental in vivo RV infection in healthy controls and patients with asthma and in vitro models of HDM exposure and RV infection in primary airway epithelial cells. We found that intranasal RV infection in patients with asthma led to the highly augmented inflammasome-mediated lower airway inflammation detected in bronchial brushes, biopsies and bronchoalveolar lavage fluid. Mechanistically, RV infection in bronchial airway epithelium led to retinoic acid-inducible gene I (RIG-I), but not via NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, which was highly augmented in patients with asthma, especially upon pre-exposure to HDM. This excessive activation of RIG-I inflammasomes was responsible for the impairment of antiviral type I/III interferons (IFN), prolonged viral clearance and unresolved inflammation in asthma in vivo and in vitro. Pre-exposure to HDM amplifies RV-induced epithelial injury in patients with asthma via enhancement of pro-IL1{beta} expression and release, additional inhibition of type I/III IFNs and activation of auxiliary proinflammatory and pro-remodeling proteins. Finally, in order to determine whether RV-induced activation of RIG-I inflammasome may play a role in the susceptibility to severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection in asthma, we analyzed the effects of HDM exposure and RV/SARS-CoV-2 coinfection. We found that prior infection with RV restricted SARS-CoV-2 replication, but co-infection augmented RIG-I inflammasome activation and epithelial inflammation in patients with asthma, especially in the presence of HDM. Timely inhibition of epithelial RIG-I inflammasome activation may lead to more efficient viral clearance and lower the burden of RV and SARS-CoV-2 infections.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20220509

RESUMO

BackgroundAntibody testing can help define how protective immunity to SARS-CoV-2 is and how long this immunity lasts. Many antibody tests have been evaluated in hospitalised rather than community based COVID-19 cases. Virtus Respiratory Research Ltd (Virtus) has developed its own quantitative IgM and IgG SARS CoV-2 antibody assay. We report its validation and performance characteristics and compare its performance with the Abbott Architect and Roche Elecsys assays in community COVID cases. MethodsWe developed a quantitative antibody test to detect IgM and IgG to the SARS-CoV-2 S1 spike protein (the Virtus test) and validated this test in 107 "true positive" sera from 106 community-managed and 1 hospitalised COVID-19 cases and 208 "true negative" serum samples. We validated the Virtus test against a neutralising antibody test. We determined sensitivities of the Abbott test in the 107 true positive samples and the Roche test in a subset of 75 true positive samples. ResultsThe Virtus quantitative test was positive in 93 of 107 (87%) community cases of COVID-19 and both IgM and IgG levels correlated strongly with neutralising antibody titres (r=0.75 for IgM, r=0.71 for IgG, P<0.0001 for both antibodies). The specificity of the Virtus test was 98.6% for low level antibody positives, 99.5% for moderate positives and 100% for high or very high positives. The Abbott test had a sensitivity of 68%. In the 75 sample subset, the Virtus test was positive in 91%, the Roche test in 69%. ConclusionsThe Abbott and Roche tests had sensitives of 68% and 69% respectively in this community set of COVID-19 sera, while the Virtus test had sensitivities of 87% and 91% in the same sample sets. The strong positive correlation with virus neutralization suggests a positive Virtus quantitative antibody test is likely predictive of protective against recurrent COVID-19. FundingThe development of the Virtus test and sample testing with all antibody tests was funded by Virtus Respiratory Research Ltd. The research studies providing 111 of the 208 of the "true negative" samples was supported by MRC Grant numbers MR/M025330/1 and G1100238 and by the National Institute of Health Research (NIHR) Imperial Biomedical Research Centre (BRC), SLJ is a NIHR Emeritus Senior Investigator and is funded in part by European Research Council Advanced Grant 788575 and the Asthma UK Clinical Chair (grant CH11SJ). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-713201

RESUMO

PURPOSE: In order to gain an insight into determinants of reported variability in immune responses to respiratory viruses in human bronchial epithelial cells (HBECs) from asthmatics, the responses of HBEC to viral infections were evaluated in HBECs from phenotypically heterogeneous groups of asthmatics and in healthy controls. METHODS: HBECs were obtained during bronchoscopy from 10 patients with asthma (6 atopic and 4 non-atopic) and from healthy controls (n=9) and grown as undifferentiated cultures. HBECs were infected with parainfluenza virus (PIV)-3 (MOI 0.1) and rhinovirus (RV)-1B (MOI 0.1), or treated with medium alone. The cell supernatants were harvested at 8, 24, and 48 hours. IFN-α, CXCL10 (IP-10), and RANTES (CCL5) were analyzed by using Cytometric Bead Array (CBA), and interferon (IFN)-β and IFN-λ1 by ELISA. Gene expression of IFNs, chemokines, and IFN-regulatory factors (IRF-3 and IRF-7) was determined by using quantitative PCR. RESULTS: PIV3 and RV1B infections increased IFN-λ1 mRNA expression in HBECs from asthmatics and healthy controls to a similar extent, and virus-induced IFN-λ1 expression correlated positively with IRF-7 expression. Following PIV3 infection, IP-10 protein release and mRNA expression were significantly higher in asthmatics compared to healthy controls (median 36.03-fold). No differences in the release or expression of RANTES, IFN-λ1 protein and mRNA, or IFN-α and IFN-β mRNA between asthmatics and healthy controls were observed. However, when asthmatics were divided according to their atopic status, HBECs from atopic asthmatics (n=6) generated significantly more IFN-λ1 protein and demonstrated higher IFN-α, IFN-β, and IRF-7 mRNA expressions in response to PIV3 compared to non-atopic asthmatics (n=4) and healthy controls (n=9). In response to RV1B infection, IFN-β mRNA expression was lower (12.39-fold at 24 hours and 19.37-fold at 48 hours) in non-atopic asthmatics compared to atopic asthmatics. CONCLUSIONS: The immune response of HBECs to virus infections may not be deficient in asthmatics, but seems to be modified by atopic status.


Assuntos
Humanos , Asma , Brônquios , Broncoscopia , Quimiocina CCL5 , Quimiocinas , Ensaio de Imunoadsorção Enzimática , Células Epiteliais , Expressão Gênica , Imunidade Inata , Interferons , Infecções por Paramyxoviridae , Reação em Cadeia da Polimerase , Rhinovirus , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...