Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(8): 13765-13775, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472982

RESUMO

The simulation of large-area diffractive optical elements (DOEs) is challenging when non-paraxial propagation and coupling effects between neighboring structures shall be considered. We developed a novel method for the farfield simulation of DOEs, especially computer-generated holograms (CGHs) with lateral feature sizes in the wavelength range. It uses a machine learning approach to predict the optical function based on geometry parameters. Therefore, training data are calculated by physical simulation methods to create a linear regression model. With the trained model a very fast computation of the farfield is possible with high conformity to results of rigorous methods.

2.
Opt Express ; 29(7): 10879-10892, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820211

RESUMO

We propose a novel method for the wave-optical simulation of diffractive optical elements (DOEs) like metasurfaces or computer-generated holograms (CGHs). Existing techniques mostly rely on the assumption of local periodicity to predict the performance of elements. The utilization of a specially adapted finite-difference beam propagation method (BPM) allows the semi-rigorous simulation of entire DOEs within a reasonable runtime due to linear scaling with the number of grid points. Its applicability is demonstrated by the simulation of a metalens and a polarization-dependent beamsplitter, both based on effective-medium metasurfaces. A comparison shows high conformity to rigorous simulations.

3.
Opt Express ; 29(5): 6608-6619, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726178

RESUMO

Purposely tailored thin film stacks sustaining surface waves have been utilized to create a unique link between emission angle and wavelength of fluorescent dye molecules. The knowledge of the thin film stack's properties allows us to derive the intrinsically emitted luminescence spectrum as well as to gain information about the orientation of fluorophores from angularly resolved experiments. This corresponds to replacing all the equipment necessary for polarized spectroscopy with a single smart thin film stack, potentially enabling single shot analyses in the future. The experimental results agree well with those from other established techniques, when analyzing the Rubrene derivative in a 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T) host used for the fabrication of optimized organic light-emitting diodes. The findings illustrate how resonant layered stacks can be applied to integrated spectroscopic analyses.

4.
Opt Express ; 26(21): 28104-28118, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469866

RESUMO

Diffuse scattering of optical one-dimensional gratings becomes increasingly critical as it constrains the performance, e.g., of grating spectrometers. In particular, stochastic disturbances of the ideal grating structure provoke straylight. In this paper, the straylight spectrum of stochastically disturbed gratings is examined. First, a 1D-method is presented that allows to calculate 2D-diffuse scattering of arbitrarily polarized light originating from stochastic disturbances of the grating geometry on the basis of standard optical simulation tools. Within the scope of this method an enormous reduction of computational effort is achieved compared to the full 2D-simulation approach, i.e., the computation time can be reduced by several orders of magnitude. Hence, the method also allows to address even large period gratings that are not possible to calculate within a full 2D-approach. In analogy to scattering theories for surface roughness the method relies on typical characteristics of straylight originating from small disturbances, that the angle resolved scattering (ARS) can be separated into a product of the power spectral density describing the 2D stochastic process and additional factors depending on the undisturbed 1D grating structure. In a second part, an analytical model within Fourier optics utilizing thin element approximation (TEA) describing the wide angle scattering of lamellar gratings disturbed by line edge roughness (LER) for TE-polarized light is derived and verified by applying the 1D-simulation method. For shallow gratings, we find an excellent agreement between simulation and TEA over the whole transmission half space. In addition, this model allows a descriptive understanding of the underlying physical effects and, accordingly, the influence of relevant parameters (grating geometry, refractive indices, illumination) onto the scattering spectra is discussed. Further, it is shown that LER-scattering can be described within a modified Rayleigh-Rice-ARS usually found within the frame of surface roughness.

5.
Clin Toxicol (Phila) ; 56(4): 264-272, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28906147

RESUMO

OBJECTIVE: Waterpipe smoking may increasingly account for unintentional carbon monoxide poisoning, a serious health hazard with high morbidity and mortality. We aimed at identifying waterpipe smoking as a cause for carbon monoxide poisoning in a large critical care database of a specialty care referral center. METHODS: This retrospective cohort study included patients with a history of exposure to waterpipe smoking and carbon monoxide blood gas levels >10% or presence of clinical symptoms compatible with CO poisoning admitted between January 2013 and December 2016. Patients' initial symptoms and carbon monoxide blood levels were retrieved from records and neurologic status was assessed before and after hyperbaric oxygen treatment. RESULTS: Sixty-one subjects with carbon monoxide poisoning were included [41 males, 20 females; mean age 23 (SD ± 6) years; range 13-45] with an initial mean carboxyhemoglobin of 26.93% (SD ± 9.72). Most common symptoms included syncope, dizziness, headache, and nausea; 75% had temporary syncope. Symptoms were not closely associated with blood COHb levels. CONCLUSION: CO poisoning after waterpipe smoking may present in young adults with a wide variability of symptoms from none to unconsciousness. Therefore diagnosis should be suspected even in the absence of symptoms.


Assuntos
Intoxicação por Monóxido de Carbono/etiologia , Fumar Cachimbo de Água/efeitos adversos , Adolescente , Adulto , Intoxicação por Monóxido de Carbono/sangue , Intoxicação por Monóxido de Carbono/diagnóstico , Carboxihemoglobina/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
8.
Opt Express ; 24(9): 10040-9, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137614

RESUMO

Single-shot, tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow using volumetrically illuminated laser-induced fluorescence. The fourth-harmonic output of an Nd:YAG laser at 266 nm is formed into a collimated 15 × 20 mm2 beam to excite the ground singlet state of acetone seeded into the central jet. Subsequent fluorescence is collected along eight lines of sight for tomographic reconstruction using a combination of stereoscopes optically coupled to four two-stage intensified CMOS cameras. The performance of the imaging system is evaluated and shown to be sufficient for recording instantaneous three-dimensional features with high signal-to-noise (130:1) and nominal spatial resolution of 0.6-1.5 mm at x/D = 7-15.5.

9.
J R Soc Interface ; 12(108): 20150119, 2015 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-26040598

RESUMO

Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin-Helmholtz instability in the shear layer behind the flapping wings.


Assuntos
Voo Animal/fisiologia , Gafanhotos/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais , Reologia
10.
Opt Lett ; 37(19): 4134-6, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23027303

RESUMO

The position of light-emitting molecules can be identified using interferometric approaches. Standard schemes utilize constructive interference to obtain a sectioned area of interest with high detection efficiency. The examination of organic light-emitting diodes (OLED) removes the common constraint of low light levels and enables a more generalized analysis. The OLED emitters are located in the front of a metal mirror, giving rise to an approximate two-wave fringe pattern in the far field. It is demonstrated theoretically and experimentally that positions around the field nodes enable the extraction of emitter distribution details within an electroluminescent layer of only 10 nm thickness.

11.
J R Soc Interface ; 9(77): 3378-86, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22977102

RESUMO

Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.


Assuntos
Voo Animal/fisiologia , Gafanhotos/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Reologia/métodos
12.
Opt Express ; 20(12): 12682-91, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714297

RESUMO

The application of large area OLEDs for lighting and signage purposes potentially requires essential changes of the common Lambert-like emission pattern. We demonstrate an array based micro optical approach for pattern shaping of area light sources based on distorted Fourier imaging of an aperture array with a micro lens array. Narrow angular emission patterns of ± 35° and ± 18° FWHM obtained experimentally demonstrate the pattern shaping with low stray light levels. The internal recycling of initially rejected photons yields intensity enhancements exceeding a factor two in forward direction that is still well below the theoretical limits due to limited reflectivity.

13.
Opt Lett ; 35(16): 2774-6, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717453

RESUMO

We designed, fabricated, and characterized three-level transmission gratings in the resonance domain with reduced shadowing losses based on a three-wave interference mechanism. A new technological approach allows for fabrication of homogeneous and large area multilevel gratings without spurious artifacts. To our knowledge, the measured efficiency of 86% exhibits the largest value yet reported for a multilevel transmission grating in the resonance domain close to normal incidence.

14.
Appl Opt ; 48(8): 1507-13, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19277083

RESUMO

We describe a method to determine the refractive index and extinction coefficient of thin film materials without prior knowledge of the film thickness and without the assumption of a dispersion model. A straightforward back calculation to the optical parameters can be performed starting from simple measurements of reflection and transmission spectra of a 100-250 nm thick supported film. The exact film thickness is found simultaneously by fulfilling the intrinsic demand of continuity of the refractive index as a function of wavelength. If both the layer and the substrate are homogeneous and isotropic media with plane and parallel interfaces, effects like surface roughness, scattering, or thickness inhomogeneities can be neglected. Then, the accuracy of the measurement is approximately 10(-2) and 10(-3) for the refractive index and the extinction coefficient, respectively. The error of the thin film thickness determination is well below 1 nm. Thus this technique is well suited to determine the input parameters for optical simulations of organic thin film devices, such as organic light-emitting diodes (OLEDs) or organic photovoltaic (OPV) cells. We apply the method to the electroluminescent polymer poly(2,5-dioctyl-p-phenylene vinylene) (PDO-PPV) and show its applicability by comparing the measured and calculated reflection and transmission spectra of OLED stacks with up to five layers.

15.
Appl Opt ; 45(8): 1831-8, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16572701

RESUMO

Adapting the concept of solid immersion lenses, we numerically study a micro-optical scheme for conventional high-index and photonic-crystal waveguide coupling by using a combination of different numerical methods such as ray tracing, angular-spectrum propagation, finite-difference time-domain simulations, and finite-element-method simulations. The numerical findings are discussed by means of impedance, group- or energy-velocity, spot-size, and phase-matching criteria. When fabrication constraints for high-index immersion lenses made of silicon are taken into account, a coupling efficiency of -80% can be reached for monomode silicon-on-insulator waveguides with a quadratic cross section of the core and rectangular cross sections of moderate aspect ratio. Similar coupling efficiencies of -80% can be obtained for silicon-on-insulator photonic-crystal waveguides. Tolerances that are due to misalignments and variations of the substrate thickness of the silicon lens are discussed.

16.
Phys Rev Lett ; 96(2): 023901, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486575

RESUMO

We experimentally investigate photonic Zener tunneling between the bands of a waveguide array by directly monitoring the propagating light inside this structure. For strong transverse index gradients we observe Zener breakdown as regular outbursts of radiation escaping from the Bloch oscillations. Tunneling to higher order photonic bands and Bloch oscillations in different bands have been detected.

17.
Phys Rev Lett ; 90(25 Pt 1): 253903, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12857133

RESUMO

We have observed for the first time stable spatial solitons in semiconductor optical amplifiers. Soliton destabilization due to the growth of background noise was suppressed by using patterned electrodes on the device. Numerical simulations fit very well with the experiment results. We show that it is possible to excite these solitons with about 60 mW input power.

18.
Opt Express ; 11(25): 3404-11, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19471471

RESUMO

The formation of localized states or modes at defects in waveguide arrays is investigated both, theoretically and experimentally. If the effective index or the coupling of the defect guide to its neighbors is varied the number and character of respective modes bound to the defect can be altered. Waveguide arrays may be considered as tailor-made or metamaterials with new and unexpected properties as e.g. guiding staggered modes bound to defects with reduced index. Although the symmetric defect waveguide becomes multimode for increased coupling it does not support antisymmetric modes. All theoretical predictions are confirmed in excellent agreement with experimental observations in polymer waveguide arrays.

19.
Opt Lett ; 27(20): 1812-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-18033371

RESUMO

We investigate azimuthal instabilities of intense rotationally symmetric pulsed beams propagating in air. Although the spatial-temporal evolution of the field is strongly influenced by the onset of plasma generation, the instabilities are caused chiefly by the Kerr effect. We conclude that calculations that assume rotational symmetry become unrealistic because of the fast growth of azimuthal instabilities shortly after the onset of plasma generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...