Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome ; 46(3): 411-22, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12834057

RESUMO

Breeding a model plant that encompasses individual traits thought to enhance yield potential, known as ideotype breeding, has traditionally focused on phenotypic selection of plants with desirable morphological traits. Broadening this breeding method to the molecular level through the use of molecular markers would avoid the environmental interactions associated with phenotypic selection. A population of 110 F5 recombinant inbred lines (RILs), derived from the cross between WO3391 and 'OAC Speedvale', was used to develop a genetic linkage map consisting of 105 random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and sequence-tagged site (STS) markers. The map has a total length of 641 cM distributed across 8 linkage groups (LGs). Five of them were aligned on the core linkage map of bean. Twenty-one quantitative trait loci (QTLs) were identified over three environments for eight agronomic and architectural traits previously defined for a bean (Phaseolus vulgaris L.) ideotype. The QTLs were mapped to seven LGs with several regions containing QTLs for multiple traits. At least one QTL was located for each trait and a maximum of four were associated with lodging. Total explained phenotypic variance ranged from 10.6% for hypocotyl diameter to 45.4% for maturity. Some of the QTLs identified will be useful for early generation selection of tall, upright, high-yielding lines in a breeding program.


Assuntos
Mapeamento Cromossômico , Phaseolus/genética , Locos de Características Quantitativas/genética , Análise de Variância , Canadá , Cruzamentos Genéticos , Fenótipo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Sitios de Sequências Rotuladas
2.
Genome ; 46(2): 259-67, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12723042

RESUMO

Recovery of superior individuals from a cross based solely on the phenotypic characteristics ofsingle-plant selections is inefficient because some traits, like yield, have low heritabilities, or because it is difficult to create the correct conditions for selection, as with disease resistance. In contrast, molecular markers are highly heritable and unaffected by environmental conditions. The objective of this study was to investigate the potential of molecular markers to identify superior lines in a breeding population by examining relationships between genetic distances (GDs) and phenotypic data for eight agronomic and architectural traits (branch angle, height, hypocotyl diameter, lodging, maturity, upper pods, pods per plant, and yield) obtained from three locations over a two-year period. From an elite common bean (Phaseolus vulgaris L.) cross, 110 recombinant inbred lines (RILs) and the two parents were screened with 116 random amplified polymorphic DNA (RAPD) markers. Pairwise GD values were calculated between each line and a selected "target" (the parent 'OAC Speedvale') using the Jaccard method and correlated to the trait data. The correlations were low and non-significant for all traits, except for branch angle (r = 0.30), maturity (r = -0.25), and pods per plant (r = 0.35). The lines were also grouped according to their cluster-based GD from the target parent using UPGMA cluster analysis. Trait data of lines within groups were combined and correlated to cluster-based GD. Correlation values were large and significant for all traits. Additionally, one-half of the top 10 yielding lines and nearly one-third of the best phenotypically ranked lines were present within the 13% of lines clustered nearest the target. A selection method using marker-based cluster analysis (MBCA) is suggested to assist phenotypic selection by directing a breeder's attention to a subsample of the population containing a high proportion of superior lines.


Assuntos
Phaseolus/genética , Característica Quantitativa Herdável , Análise por Conglomerados , Cruzamentos Genéticos , DNA de Plantas , Marcadores Genéticos , Hibridização Genética , Polimorfismo Genético , Técnica de Amplificação ao Acaso de DNA Polimórfico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...