Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Hazard Mater ; 387: 121529, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31911385

RESUMO

In situ bioaugmentation for cleanup of an hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-contaminated groundwater plume was recently demonstrated. Results of a forced-gradient, field-scale cell transport test with Gordonia sp. KTR9 and Pseudomonas fluorescens strain I-C cells (henceforth "KTR9" and "Strain I-C") showed these strains were transported 13 m downgradient over 1 month. Abundances of xplA and xenB genes, respective indicators of KTR9 and Strain I-C, approached injection well cell densities at 6 m downgradient, whereas gene abundances (and conservative tracer) had begun to increase at 13 m downgradient at test conclusion. In situ push-pull tests were subsequently completed to measure RDX degradation rates in the bioaugmented wells under ambient gradient conditions. Time-series monitoring of RDX, RDX end-products, conservative tracer, xplA and xenB gene copy numbers and XplA and XenB protein abundance were used to assess the efficacy of bioaugmentation and to estimate the apparent first-order RDX degradation rates during each test. A collective evaluation of redox conditions, RDX end-products, varied RDX degradation kinetics, and biomarkers indicated that Strain I-C and KTR9 rapidly degraded RDX. Results showed bioaugmentation is a viable technology for accelerating RDX cleanup in the demonstration site aquifer and may be applicable to other sites. Full-scale implementation considerations are discussed.


Assuntos
Substâncias Explosivas/metabolismo , Triazinas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Substâncias Explosivas/química , Bactéria Gordonia/metabolismo , Água Subterrânea/química , Cinética , Pseudomonas fluorescens/metabolismo , Triazinas/química , Poluentes Químicos da Água/química
2.
Appl Microbiol Biotechnol ; 103(17): 7161-7175, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31352507

RESUMO

The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a contaminant at many military sites. RDX bioremediation as a clean-up approach has been gaining popularity because of cost benefits compared to other methods. RDX biodegradation has primarily been linked to six functional genes (diaA, nfsI, pnrB, xenA, xenB, xplA). However, current methods for gene quantification have the risk of false negative results because of low theoretical primer coverage. To address this, the current study designed new primer sets using the EcoFunPrimer tool based on sequences collected by the Functional Gene Pipeline and Repository and these were verified based on residues and motifs. The primers were also designed to be compatible with the SmartChip Real-Time PCR system, a massively parallel singleplex PCR platform (high throughput qPCR), that enables quantitative gene analysis using 5,184 simultaneous reactions on a single chip with low volumes of reagents. This allows multiple genes and/or multiple primer sets for a single gene to be used with multiple samples. Following primer design, the six genes were quantified in RDX-contaminated groundwater (before and after biostimulation), RDX-contaminated sediment, and uncontaminated samples. The final 49 newly designed primer sets improved upon the theoretical coverage of published primer sets, and this corresponded to more detections in the environmental samples. All genes, except diaA, were detected in the environmental samples, with xenA and xenB being the most predominant. In the sediment samples, nfsI was the only gene detected. The new approach provides a more comprehensive tool for understanding RDX biodegradation potential at contaminated sites.


Assuntos
Proteínas de Bactérias/genética , Poluentes Ambientais/metabolismo , Substâncias Explosivas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Triazinas/metabolismo , Proteínas de Bactérias/química , Biodegradação Ambiental , Primers do DNA/genética , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...