Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475259

RESUMO

Currently, natural polymer materials with bactericidal properties are extremely popular. Unfortunately, although the biopolymer material itself is biodegradable, its enrichment with bactericidal compounds may affect the efficiency of biodegradation by natural soil microflora. Therefore, the primary objective of this study was to evaluate the utility of fungi belonging to the genus Trichoderma in facilitating the degradation of chitosan film modified with cinnamic acid and ellagic acid in the soil environment. Only two strains (T.07 and T.14) used chitosan films as a source of carbon and nitrogen. However, their respiratory activity decreased with the addition of tested phenolic acids, especially cinnamic acid. Addition of Trichoderma isolates to the soil increased oxygen consumption during the biodegradation process compared with native microorganisms, especially after application of the T.07 and T.14 consortium. Isolates T.07 and T.14 showed high lipolytic (55.78 U/h and 62.21 U/h) and chitinase (43.03 U/h and 41.27 U/h) activities. Chitinase activity after incorporation of the materials into the soil was higher for samples enriched with T.07, T.14 and the consortium. The isolates were classified as Trichoderma sp. and Trichoderma koningii. Considering the outcomes derived from our findings, it is our contention that the application of Trichoderma isolates holds promise for expediting the degradation process of chitosan materials containing bactericidal compounds.

2.
Foods ; 12(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37835322

RESUMO

The aim of the study was to determine the potential use of fungi of the genus Trichoderma for the degradation of phenolic acid-modified chitosan in compost. At the same time, the enzymatic activity in the compost was checked after the application of a preparation containing a suspension of the fungi Trichoderma (spores concentration 105/mL). The Trichoderma strains were characterized by high lipase and aminopeptidase activity, chitinase, and ß-1,3-glucanases. T. atroviride TN1 and T. citrinoviride TN3 metabolized the modified chitosan films best. Biodegradation of modified chitosan films by native microorganisms in the compost was significantly less effective than after the application of a formulation composed of Trichoderma TN1 and TN3. Bioaugmentation with a Trichoderma preparation had a significant effect on the activity of all enzymes in the compost. The highest oxygen consumption in the presence of chitosan with tannic acid film was found after the application of the consortium of these strains (861 mg O2/kg after 21 days of incubation). Similarly, chitosan with gallic acid and chitosan with ferulic acid were found after the application of the consortium of these strains (849 mgO2/kg and 725 mg O2/kg after 21 days of incubation). The use of the Trichoderma consortium significantly increased the chitinase activity. The application of Trichoderma also offers many possibilities in sustainable agriculture. Trichoderma can not only degrade chitosan films, but also protect plants against fungal pathogens by synthesizing chitinases and ß-1,3 glucanases with antifungal properties.

3.
Foods ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981267

RESUMO

This article provides a summarization of present knowledge on the fabrication and characterization of polymeric food packaging materials that can be an alternative to synthetic ones. The review aimed to explore different studies related to the use of phenolic acids as cross-linkers, as well as bioactive additives, to the polymer-based materials upon their application as packaging. This article further discusses additives such as benzoic acid derivatives (sinapic acid, gallic acid, and ellagic acid) and cinnamic acid derivatives (p-coumaric acid, caffeic acid, and ferulic acid). These phenolic acids are mainly used as antibacterial, antifungal, and antioxidant agents. However, their presence also improves the physicochemical properties of materials based on polymers. Future perspectives in polymer food packaging are discussed.

4.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834986

RESUMO

Graphene is a promising material that may be potentially used in biomedical applications, mainly for drug delivery applications. In our study, we propose an inexpensive 3D graphene preparation method by wet chemical exfoliation. The morphology of the graphene was studied by SEM and HRTEM. Moreover, the volumetric elemental composition (C, N, and H) of the materials was analyzed, and Raman spectra of prepared graphene samples were obtained. X-ray photoelectron spectroscopy, relevant isotherms, and specific surface area were measured. Survey spectra and micropore volume calculations were made. In addition, the antioxidant activity and hemolysis rate in contact with blood were determined. Activity against free radicals of graphene samples before and after thermal modification was tested using the DPPH method. The RSA of the material increased after graphene modification, which suggests that antioxidant properties were improved. All tested graphene samples caused hemolysis in the range of 0.28-0.64%. The results showed that all tested 3D graphene samples might be classified as nonhemolytic.


Assuntos
Grafite , Humanos , Grafite/química , Hemólise , Espectroscopia Fotoeletrônica , Microscopia Eletrônica de Transmissão
5.
J Funct Biomater ; 14(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36826867

RESUMO

Chitosan-based scaffolds modified by gallic acid, ferulic acid, and tannic acid were fabricated. The aim of the experiment was to compare the compatibility of scaffolds based on chitosan with gallic acid, ferulic acid, or tannic acid using the in vivo method. For this purpose, materials were implanted into rabbits in the middle of the latissimus dorsi muscle length. A scaffold based on unmodified chitosan was implanted by the same method as a control. Moreover, the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) spectra and scanning electron microscope (SEM) observations were made to study the interactions between chitosan and phenolic acids. Additionally, antioxidant properties and blood compatibility were investigated. The results showed that all studied materials were safe and non-toxic. However, chitosan scaffolds modified by gallic acid and tannic acid were resorbed faster and, as a result, tissues were organized faster than those modified by ferulic acid or unmodified.

6.
Polymers (Basel) ; 13(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34641227

RESUMO

Hydrogels based on collagen/ß-glucan crosslinked with tannic acid were obtained by neutralization using dialysis. The presence of tannic acid allowed obtaining stable hydrogel materials with better mechanical properties. Tannic acid was released from matrices gradually and not rapidly. The antioxidant properties of the obtained hydrogels increased over the course of their incubation in culture media and were dependent on the concentration of tannic acid in the matrices. The obtained materials influenced dehydrogenase activity and the ATP level of pathogens. Additionally, the materials' extracts improved the HaCaT cells' viability. Therefore, the obtained hydrogels seem to be promising biocompatible materials which display antimicrobial properties.

7.
Int J Biol Macromol ; 192: 728-735, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656535

RESUMO

In this work, chitosan/caffeic acid mixtures in the weight ratios of 80/20 and 50/50 were used to obtain thin films enriched with poly(ethylene glycol). It was hypothesized that the presence of caffeic acid indicates the antibacterial properties of the materials (i) and that poly(ethylene glycol) acts as a films modifier (ii). The results showed that by poly(ethylene glycol) addition, the surface free energy as well as mechanical and thermal properties were improved. Moreover, water vapor permeability was observed. All the tested materials showed antioxidant properties in the range of approximately 90%. They also showed antibacterial effectiveness against both Gram-positive and Gram-negative bacteria. The most appropriate material for the application as packaging was composed of chitosan and caffeic acid mixed in a 50/50 weight ratio with 20% PEG addition.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ácidos Cafeicos/química , Quitosana/química , Polietilenoglicóis/química , Fenômenos Químicos , Ativação Enzimática , Fenômenos Mecânicos , Oxirredutases/química , Permeabilidade , Vapor
8.
Materials (Basel) ; 14(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34500995

RESUMO

In this study, sodium alginate-based thin films were modified by the addition of tannic acid. Materials were obtained by solvent evaporation. They were characterized by the observation of its morphology and its surface by scanning electron microscope and atomic force microscope. The thermal properties were studied by differential scanning calorimetry. The concentration of tannic acid released from the material was determined by the Folin-Ciocalteu method. The material safety for biomedical application was determined by the hemolysis rate study in contact with sheep blood as well as platelet adhesion to the material surface. Based on the obtained results, we assume that proposed films based on sodium alginate/tannic acid are safe and may potentially find application in medicine.

9.
Int J Biol Macromol ; 187: 309-318, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34310995

RESUMO

The aim of this study was to isolate biofilm-forming bacteria that are capable of degrading polyhydroxybutyrate (PHB) with polyhexamethylene guanidine (PHMG) derivatives. The three types of derivatives incorporated in PHB and their concentration affected the biodegradability of the tested films in both water and compost. The PHMG derivative granular polyethylene wax at the highest concentration significantly inhibited BOD in both environments. At the same time, in water, PHB with PHMG stearate at 1% concentration was also found to inhibit biodegradation but to a lesser extent than PHMG polyethylene wax granulate. Analyzing the values of biofilm abundance and their hydrolytic activity in water, low concentrations of PHMG derivatives (0.2 and 0.6%) slightly inhibited biofilm abundance on the surface of the tested composites. Only granular polyethylene wax PHMG (at 1% concentration) significantly reduced biofilm formation and hydrolase activity in the compost to the greatest extent. Bacteria from biofilm were isolated and identified. Based on the 16S rRNA gene sequence, the strains belong to Bacillus toyonensis HW1 and Variovorax boronicumulans HK3. Introduction of the tested isolates to the environment can enhance composites degradation. However, this requires further research.


Assuntos
Bactérias/enzimologia , Guanidinas/metabolismo , Hidrolases/metabolismo , Hidroxibutiratos/metabolismo , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Compostagem , Hidrolases/genética , Hidrólise , Ribotipagem , Água/química
10.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066411

RESUMO

Polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), and stainless steel (SS) are commonly used in medicine and food production technologies. During contact with microorganisms on the surface of these materials, a microbial biofilm is formed. The biofilm structure is difficult to remove and promotes the development of pathogenic bacteria. For this reason, the inhibition of biofilm formation in medical and food production environments is very important. For this purpose, five naturally occurring compounds were used for antimicrobial screening tests. The two with the best antimicrobial properties were chosen to inhibit the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. After 3 days of exposure, thymol reduced the amount of biofilm of Pseudomonas aeruginosa within the range of 70-77% and 52-75% for Staphylococcus aureus. Carvacrol inhibited the formation of biofilms by up to 74-88% for Pseudomonas aeruginosa and up to 86-100% for Staphylococcus aureus. Those phenols decreased the enzyme activity of the biofilm by up to 40-100%. After 10 days of exposure to thymol, biofilm formation was reduced by 80-100% for Pseudomonas aeruginosa and by about 79-100% for Staphylococcus aureus. Carvacrol reduced the amount of biofilm by up to 91-100% for Pseudomonas aeruginosa and up to 95-100% for Staphylococcus aureus.


Assuntos
Biofilmes/efeitos dos fármacos , Cimenos/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Timol/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Química Farmacêutica/tendências , Tecnologia de Alimentos/tendências , Hidrólise , Teste de Materiais , Aço Inoxidável , Propriedades de Superfície
11.
Materials (Basel) ; 14(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065063

RESUMO

In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics.

12.
Materials (Basel) ; 14(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801809

RESUMO

Collagen possesses unique properties, e.g., biocompatibility, biodegradability, and non-toxicity. However, collagen material degrades too quickly and has low mechanical properties. One of the methods of polymers' modification is mixing them to obtain blends. In this study, the influence of ß-glucan for collagen material was analyzed. The interaction between the functional groups of the polymer was analyzed by ATR-FTIR (attenuated total reflection-fourier transform infrared) spectroscopy. The influence of ß-glucan on mechanical properties was evaluated. The surface properties of materials were assessed using contact angle measurements and the topography of materials was evaluated by AFM (atomic force microscope). The structure of materials was analyzed according to SEM (scanning electron microscopy) pictures. Moreover, the DPPH-free radicals' scavenging ability and biocompatibility against erythrocytes and HaCaT cells were evaluated. Collagen and ß-glucan were bound together by a hydrogen bond. ß-glucan addition increased the roughness of the surface of the film and resulted in a more rigid character of the materials. A small addition of ß-glucan to collagen provided a more hydrophilic character. All the materials could swell in in vitro conditions and showed antioxidant activity. Materials do not cause erythrocyte hemolysis. Finely, our cytotoxicity studies indicated that ß-glucan can be safely added at small (10% or less) quantity to collagen matrix, they sufficiently support cell growth, and the degradation products of such matrices may actually provide some beneficial effects to the surrounding cells/tissues.

13.
Materials (Basel) ; 13(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066572

RESUMO

Sodium alginate and tannic acid are natural compounds that can be mixed with each other. In this study, we propose novel eco-friendly hydrogels for biomedical applications. Thus, we conducted the following assessments including (i) observation of the structure of hydrogels by scanning electron microscope; (ii) bioerosion and the concentration of released tannic acid from subjected material; (iii) dehydrogenase activity assay to determine antibacterial activity of prepared hydrogels; and (iv) blood and cell compatibility. The results showed that hydrogels based on sodium alginate/tannic acid exert a porous structure. The immersion in simulated body fluid (SBF) results in the biomineralization process occurring on their surface while the bioerosion studies revealed that the addition of tannic acid improves hydrogels' stability proportional to its concentration. Besides, tannic acid release concentration depends on the type of hydrogels and the highest amount was noticed for those based on sodium alginate with the content of 30% tannic acid. Antibacterial activity of hydrogels was proven for both Gram-negative and Gram-positive bacteria, the hemolysis rate was below 5% and the viability of the cells was elevated with an increasing amount of tannic acid in hydrogels. Collectively, we assume that obtained materials make the imperative to consider them for biomedical applications.

14.
Prog Biomater ; 9(3): 115-123, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32951173

RESUMO

The interests in the biomedical impact of tannic acid (TA) targeting production of various types of biomaterials, such as digital microfluids, chemical sensors, wound dressings, or bioimplants constantly increase. Despite the significant disadvantage of materials obtained from natural-based compounds and their low stability and fragility, therefore, there is an imperative need to improve materials properties by addition of stabilizing formulas. In this study, we performed assessments of thin films over TA proposed as a cross-linker to be used in combination with polymeric matrix based on chitosan (CTS), i.e. CTS/TA at 80:20 or CTS/TA at 50:50 and poly(ethylene glycol) (PEG) at the concentration of 10% or 20%. We evaluated their mechanical parameters as well as the cytotoxicity assay for human bone marrow mesenchymal stem cells, human melanotic melanoma (MNT-1), and human osteosarcoma (Saos-2). The results revealed significant differences in dose-dependent of PEG regarding the maximum tensile strength (σmax) or impact on the metabolic activity of tissue culture plastic. We observed that PEG improved mechanical parameters prominently, decreased the hemolysis rate, and did not affect cell viability negatively. Enclosed data, confirmed also by our previous reports, will undoubtedly pave the path for the future application of tannic acid-based biomaterials to treat wound healing.

15.
Int J Biol Macromol ; 149: 290-295, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004596

RESUMO

In this work thin film made from the mixture of collagen, hyaluronic acid and chitosan were obtained during solvent evaporation method. The mixtures of biopolymers were modified by dialdehyde starch, which was used as a crosslinking agent. The influence of crosslinking agent on the physico-chemical properties of polymeric matrices was evaluated. The interactions between functional groups of polymers were evaluated by Fourier transform infrared spectroscopy for both unmodified and modified samples. Mechanical properties of film were tested in dry condition using a mechanical testing machine. Morphology of the surface was studied by Atomic Force Microscopy and the roughness parameters were analyzed. Moreover, surface free energy and its polar and dispersive components were evaluated by contact angle measurements. It was found that the addition of dialdehyde starch modified all tested parameters of the studied films. Samples became less elastic and more resist for rupture. Moreover, samples became less rough after crosslinking process and surface free energy increased. Thin film made from the mixture of collagen, hyaluronic acid and chitosan crosslinked with dialdehyde starch can be applied in medicine and in cosmetics.


Assuntos
Quitosana/química , Colágeno/química , Ácido Hialurônico/química , Amido/análogos & derivados , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Propriedades de Superfície
16.
Mater Sci Eng C Mater Biol Appl ; 86: 103-108, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29525085

RESUMO

In this study polymeric blends based on collagen, chitosan and hyaluronic acid in the form of thin films with the addition of gentamicin sulfate were obtained. Surface morphology of films was evaluated based on atomic force microscopy images. Surface free energy was measured and its polar and dispersive components were calculated. Moreover, oxygen and water vapor permeability through the material were measured as well as the water content in materials was studied. Thermal stability was determined by differential scanning calorimetry. Microbiological tests were performed to evaluate the diffusion of the drug from matrixes. The results showed that thin films based on collagen, chitosan and hyaluronic acid enriched in gentamicin sulfate inhibit the growth of both, Gram negative bacteria (E. coli and P. aeruginosa) and Gram positive ones (S. aureus).


Assuntos
Anti-Infecciosos/química , Quitosana/química , Colágeno/química , Portadores de Fármacos/química , Gentamicinas/química , Ácido Hialurônico/química , Anti-Infecciosos/farmacologia , Varredura Diferencial de Calorimetria , Gentamicinas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Oxigênio/metabolismo , Permeabilidade , Água/química
17.
J Sci Food Agric ; 98(2): 767-774, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28675464

RESUMO

BACKGROUND: Essential oils (EOs) from Artemisia dracunculus L. and Origanum vulgare L. ssp. hirtum were obtained and the qualitative and quantitative chemical composition of the extracts was investigated. The insecticidal activity of EOs against the larval stages of Alphitobius diaperinus (Panzer) was studied. Moreover, the antimicrobial activity of these oils against pathogens transmitted by this pest was also investigated. RESULTS: The obtained results indicate the possibility of using Greek oregano EO with a high content of carvacrol as a feed additive in poultry nutrition. The use of the Greek oregano oil at 1% (w/w) dose showed stronger reduction of body weight gain of stage IV larvae. Their body mass was only 10.92% of the control. Moreover, EOs from O. vulgare strongly inhibited the growth of tested bacterial strains as well as Candida albicans. CONCLUSION: Greek oregano EO may be a good alternative to antibiotic growth promoters and coccidiostats whose use in feeding farm animals has been prohibited since January 2006 under European Union directives. The introduction of O. vulgare L. ssp. hirtum EO into the premises of farm and poultry houses may help to improve sanitary conditions and control of the lesser mealworm inhabiting these buildings. © 2017 Society of Chemical Industry.


Assuntos
Antibacterianos/farmacologia , Artemisia/química , Besouros/efeitos dos fármacos , Inseticidas/farmacologia , Origanum/química , Óleos de Plantas/farmacologia , Animais , Antibacterianos/química , Inseticidas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...