Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 14(7): 2014-29, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25991688

RESUMO

Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum-the highest proteome coverage reported with a QTOF instrument so far.


Assuntos
Proteômica/instrumentação , Proteômica/métodos , Animais , Linhagem Celular , Cromatografia Líquida , Diploide , Haploidia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Íons , Espectrometria de Massas , Camundongos , Peso Molecular , Peptídeos/metabolismo , Proteoma/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
2.
Science ; 338(6110): 1088-93, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23180859

RESUMO

The human cytomegalovirus (HCMV) genome was sequenced 20 years ago. However, like those of other complex viruses, our understanding of its protein coding potential is far from complete. We used ribosome profiling and transcript analysis to experimentally define the HCMV translation products and follow their temporal expression. We identified hundreds of previously unidentified open reading frames and confirmed a fraction by means of mass spectrometry. We found that regulated use of alternative transcript start sites plays a broad role in enabling tight temporal control of HCMV protein expression and allowing multiple distinct polypeptides to be generated from a single genomic locus. Our results reveal an unanticipated complexity to the HCMV coding capacity and illustrate the role of regulated changes in transcript start sites in generating this complexity.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/genética , Genoma Viral , Fases de Leitura Aberta , Processamento Alternativo , Variação Genética , Humanos , Biossíntese de Proteínas/genética , Proteoma/genética , Análise de Sequência de DNA , Transcrição Gênica
3.
J Proteome Res ; 11(11): 5479-91, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22998608

RESUMO

Modern mass spectrometry-based proteomics can produce millions of peptide fragmentation spectra, which are automatically identified in databases using sequence-specific b- or y-ions. Proteomics projects have mainly been performed with low resolution collision-induced dissociation (CID) in ion traps and beam-type fragmentation on triple quadrupole and QTOF instruments. Recently, the latter has also become available with Orbitrap instrumentation as higher energy collisional dissociation (HCD), routinely providing full mass range fragmentation with high mass accuracy. To systematically study the nature of HCD spectra, we made use of a large scale data set of tryptic peptides identified with an FDR of 0.0001, from which we extract a subset of more than 16,000 that have little or no contribution from cofragmented precursors. We employed a newly developed computer-assisted "Expert System", which distills our experience and literature knowledge about fragmentation pathways. It aims to automatically annotate the peaks in high mass accuracy fragment spectra while strictly controlling the false discovery rate. Using this Expert System we determined that sequence specific regular ions covering the entire sequence were present for almost all peptides with up to 10 amino acids (median 100%). Peptides up to 20 amino acid length contained sufficient fragmentation to cover 80% of the sequence. Internal fragments are common in HCD spectra but not in high resolution CID spectra (10% vs 1%). The low mass region contains abundant immonium ions (6% of fragment ion intensity), the characteristic a(2), b(2) ion pair (72% of spectra), side chain fragments and reporter ions for peptide modifications such as tyrosine phosphorylation. B- and y-ions account for only 20% of fragment ions by number but 53% by ion intensity. Overall, 84% of the fragment ion intensity was unambiguously explainable. Thus high mass accuracy HCD and CID data are near comprehensively and automatically interpretable.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Tripsina/metabolismo , Mapeamento de Peptídeos , Proteômica
4.
Mol Cell Proteomics ; 11(11): 1500-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22888147

RESUMO

An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions.


Assuntos
Computadores , Sistemas Inteligentes , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Escherichia coli/metabolismo , Células HeLa , Humanos , Internet , Dados de Sequência Molecular , Proteínas/química , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Interface Usuário-Computador , Fluxo de Trabalho
5.
Mol Cell Proteomics ; 11(3): O111.013698, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22159718

RESUMO

Although only a few years old, the combination of a linear ion trap with an Orbitrap analyzer has become one of the standard mass spectrometers to characterize proteins and proteomes. Here we describe a novel version of this instrument family, the Orbitrap Elite, which is improved in three main areas. The ion transfer optics has an ion path that blocks the line of sight to achieve more robust operation. The tandem MS acquisition speed of the dual cell linear ion trap now exceeds 12 Hz. Most importantly, the resolving power of the Orbitrap analyzer has been increased twofold for the same transient length by employing a compact, high-field Orbitrap analyzer that almost doubles the observed frequencies. An enhanced Fourier Transform algorithm-incorporating phase information-further doubles the resolving power to 240,000 at m/z 400 for a 768 ms transient. For top-down experiments, we combine a survey scan with a selected ion monitoring scan of the charge state of the protein to be fragmented and with several HCD microscans. Despite the 120,000 resolving power for SIM and HCD scans, the total cycle time is within several seconds and therefore suitable for liquid chromatography tandem MS. For bottom-up proteomics, we combined survey scans at 240,000 resolving power with data-dependent collision-induced dissociation of the 20 most abundant precursors in a total cycle time of 2.5 s-increasing protein identifications in complex mixtures by about 30%. The speed of the Orbitrap Elite furthermore allows scan modes in which complementary dissociation mechanisms are routinely obtained of all fragmented peptides.


Assuntos
Cromatografia Líquida , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/instrumentação , Espectrometria de Massas em Tandem/instrumentação , Células HeLa , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
6.
J Am Soc Mass Spectrom ; 22(8): 1373-80, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21953191

RESUMO

Mass accuracy is a key parameter in proteomic experiments, improving specificity, and success rates of peptide identification. Advances in instrumentation now make it possible to routinely obtain high resolution data in proteomic experiments. To compensate for drifts in instrument calibration, a compound of known mass is often employed. This 'lock mass' provides an internal mass standard in every spectrum. Here we take advantage of the complexity of typical peptide mixtures in proteomics to eliminate the requirement for a physical lock mass. We find that mass scale drift is primarily a function of the m/z and the elution time dimensions. Using a subset of high confidence peptide identifications from a first pass database search, which effectively substitute for the lock mass, we set up a global mathematical minimization problem. We perform a simultaneous fit in two dimensions using a function whose parameterization is automatically adjusted to the complexity of the analyzed peptide mixture. Mass deviation of the high confidence peptides from their calculated values is then minimized globally as a function of both m/z value and elution time. The resulting recalibration function performs equal or better than adding a lock mass from laboratory air to LTQ-Orbitrap spectra. This 'software lock mass' drastically improves mass accuracy compared with mass measurement without lock mass (up to 10-fold), with none of the experimental cost of a physical lock mass, and it integrated into the freely available MaxQuant analysis pipeline ( www.maxquant.org ).


Assuntos
Espectrometria de Massas/métodos , Fragmentos de Peptídeos/química , Proteômica/métodos , Algoritmos , Bases de Dados de Proteínas , Células HeLa , Humanos , Espectrometria de Massas/instrumentação , Peso Molecular , Fragmentos de Peptídeos/análise , Padrões de Referência
7.
Mol Cell Proteomics ; 10(9): M111.011015, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21642640

RESUMO

Mass spectrometry-based proteomics has greatly benefitted from enormous advances in high resolution instrumentation in recent years. In particular, the combination of a linear ion trap with the Orbitrap analyzer has proven to be a popular instrument configuration. Complementing this hybrid trap-trap instrument, as well as the standalone Orbitrap analyzer termed Exactive, we here present coupling of a quadrupole mass filter to an Orbitrap analyzer. This "Q Exactive" instrument features high ion currents because of an S-lens, and fast high-energy collision-induced dissociation peptide fragmentation because of parallel filling and detection modes. The image current from the detector is processed by an "enhanced Fourier Transformation" algorithm, doubling mass spectrometric resolution. Together with almost instantaneous isolation and fragmentation, the instrument achieves overall cycle times of 1 s for a top 10 higher energy collisional dissociation method. More than 2500 proteins can be identified in standard 90-min gradients of tryptic digests of mammalian cell lysate- a significant improvement over previous Orbitrap mass spectrometers. Furthermore, the quadrupole Orbitrap analyzer combination enables multiplexed operation at the MS and tandem MS levels. This is demonstrated in a multiplexed single ion monitoring mode, in which the quadrupole rapidly switches among different narrow mass ranges that are analyzed in a single composite MS spectrum. Similarly, the quadrupole allows fragmentation of different precursor masses in rapid succession, followed by joint analysis of the higher energy collisional dissociation fragment ions in the Orbitrap analyzer. High performance in a robust benchtop format together with the ability to perform complex multiplexed scan modes make the Q Exactive an exciting new instrument for the proteomics and general analytical communities.


Assuntos
Espectrometria de Massas , Fragmentos de Peptídeos/análise , Proteínas/análise , Proteômica/métodos , Algoritmos , Sequência de Aminoácidos , Feminino , Células HeLa , Humanos , Íons , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Proteínas/química
8.
J Proteome Res ; 10(4): 1785-93, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21309581

RESUMO

Shotgun proteomics entails the identification of as many peptides as possible from complex mixtures. Here we investigate how many peptides are detectable by high resolution MS in standard LC runs of cell lysate and how many of them are accessible to data-dependent MS/MS. Isotope clusters were determined by MaxQuant and stringently filtered for charge states and retention times typical of peptides. This resulted in more than 100,000 likely peptide features, of which only about 16% had been targeted for MS/MS. Three instrumental attributes determine the proportion of additional peptides that can be identified: sequencing speed, sensitivity, and precursor ion isolation. In our data, an MS/MS scan rate of 25/s would be necessary to target all peptide features, but this drops to less than 17/s for reasonably abundant peptides. Sensitivity is a greater challenge, with many peptide features requiring long MS/MS injection times (>250 ms). The greatest limitation, however, is the generally low proportion of the target peptide ion intensity in the MS/MS selection window (the "precursor ion fraction" or PIF). Median PIF is only 0.14, making the peptides difficult to identify by standard MS/MS methods. Our results aid in developing strategies to further increase coverage in shotgun proteomics.


Assuntos
Cromatografia Líquida/métodos , Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Células HeLa , Humanos , Íons/química , Isótopos/química , Dados de Sequência Molecular , Proteínas/química , Proteínas/metabolismo , Proteômica/instrumentação , Sensibilidade e Especificidade , Software
9.
J Proteome Res ; 10(4): 1794-805, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21254760

RESUMO

A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.


Assuntos
Espectrometria de Massas/instrumentação , Peptídeos/análise , Proteômica/instrumentação , Ferramenta de Busca , Software , Algoritmos , Sequência de Aminoácidos , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Bases de Dados de Proteínas , Células HeLa , Humanos , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Sensibilidade e Especificidade
10.
Chem Commun (Camb) ; 47(6): 1821-3, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21132179

RESUMO

The structures of a series of spherical host-guest complexes [{MeE(PPh)(3)Li(4)·3thf}(4)(µ(4)-X)](-) (E = Al, [1X](-); E = Ga, [2X](-); E = In, [3X](-)) reveal that changing the halide ions (X = Cl, Br, or I) within their central tetrahedral Li(4) sites has negligible effect on the structural parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...