Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(20)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291184

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of older adults characterized by fibrotic replacement of functional gas exchange units in the lung. The strongest risk factor for IPF is a genetic variantin the promoter region of the gel-forming mucin, MUC5B. To better understand how the MUC5B variant influences development of fibrosis, we used the NicheNet R package and leveraged publicly available single-cell RNA sequencing data to identify and evaluate how epithelia participating in gas exchange are influenced by ligands expressed in control, MUC5B variant, and fibrotic environments. We observed that loss of type-I alveolar epithelia (AECI) characterizes the single-cell RNA transcriptome in fibrotic lung and validated the pattern of AECI loss using single nuclear RNA sequencing. Examining AECI transcriptomes, we found enrichment of transcriptional signatures for IL6 and AREG, which we have previously shown to mediate aberrant epithelial fluidization in IPF and murine bleomycin models. Moreover, we found that the protease ADAM17, which is upstream of IL6 trans-signaling, was enriched in control MUC5B variant donors. We used immunofluorescence to validate a role for enhanced expression of ADAM17 among MUC5B variants, suggesting involvement in IPF pathogenesis and maintenance.


Assuntos
Fibrose Pulmonar Idiopática , Interleucina-6 , Humanos , Camundongos , Animais , Idoso , Ligantes , Interleucina-6/genética , Regiões Promotoras Genéticas , Fibrose Pulmonar Idiopática/patologia , Bleomicina , Comunicação Celular , RNA , Peptídeo Hidrolases/metabolismo
2.
Sci Transl Med ; 14(654): eabo5254, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35857823

RESUMO

Chronic disease results from the failure of tissues to maintain homeostasis. In the lung, coordinated repair of the epithelium is essential for preserving homeostasis. In animal models and human lung disease, airway epithelial cells mobilize in response to lung injury, resulting in the formation of airway-like cysts with persistent loss of functional cell types and parenchymal architecture. Using live-cell imaging of human lung epithelial cultures and mouse precision-cut lung slices, we demonstrated that distal airway epithelia are aberrantly fluidized both after injury and in fibrotic lung disease. Through transcriptomic profiling and pharmacologic stimulation of epithelial cultures, we identified interleukin-6 (IL-6) signaling as a driver of tissue fluidization. This signaling cascade occurred independently of canonical Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling but instead was dependent on a downstream SRC family kinase (SFK)-yes-associated protein (YAP) axis. Airway epithelial-fibroblast cocultures revealed that the fibrotic mesenchyme acts as a source of IL-6 family cytokines, which drive airway fluidization. Inhibition of the IL-6-SFK-YAP cascade was sufficient to prevent fluidization in both in vitro and ex vivo models. Last, we demonstrated a reduction in fibrotic lung remodeling in mice through genetic or pharmacologic targeting of IL-6-related signaling. Together, our findings illustrate the critical role of airway epithelial fluidization in coordinating the balance between homeostatic lung repair and fibrotic airspace remodeling.


Assuntos
Interleucina-6 , Fibrose Pulmonar , Animais , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmão/patologia , Camundongos , Fibrose Pulmonar/patologia
5.
Transl Res ; 241: 13-24, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34547499

RESUMO

While the coronavirus disease 19 (COVID-19) pandemic has transformed the medical and scientific communites since it was first reported in late 2019, we are only beginning to understand the chronic health burdens associated with this disease. Although COVID-19 is a multi-systemic disease, the lungs are the primary source of infection and injury, resulting in pneumonia and, in severe cases, acute respiratory distress syndrome (ARDS). Given that pulmonary fibrosis is a well-recognized sequela of ARDS, many have questioned whether COVID-19 survivors will face long-term pulmonary consequences. This review is aimed at integrating our understanding of the pathophysiologic mechanisms underlying fibroproliferative ARDS with our current knowledge of the pulmonary consequences of COVID-19 disease.


Assuntos
COVID-19/complicações , Pandemias , Fibrose Pulmonar/complicações , Síndrome do Desconforto Respiratório/complicações , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , Humanos
6.
Nat Commun ; 12(1): 4566, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315881

RESUMO

The airway epithelium serves as the interface between the host and external environment. In many chronic lung diseases, the airway is the site of substantial remodeling after injury. While, idiopathic pulmonary fibrosis (IPF) has traditionally been considered a disease of the alveolus and lung matrix, the dominant environmental (cigarette smoking) and genetic (gain of function MUC5B promoter variant) risk factor primarily affect the distal airway epithelium. Moreover, airway-specific pathogenic features of IPF include bronchiolization of the distal airspace with abnormal airway cell-types and honeycomb cystic terminal airway-like structures with concurrent loss of terminal bronchioles in regions of minimal fibrosis. However, the pathogenic role of the airway epithelium in IPF is unknown. Combining biophysical, genetic, and signaling analyses of primary airway epithelial cells, we demonstrate that healthy and IPF airway epithelia are biophysically distinct, identifying pathologic activation of the ERBB-YAP axis as a specific and modifiable driver of prolongation of the unjammed-to-jammed transition in IPF epithelia. Furthermore, we demonstrate that this biophysical state and signaling axis correlates with epithelial-driven activation of the underlying mesenchyme. Our data illustrate the active mechanisms regulating airway epithelial-driven fibrosis and identify targets to modulate disease progression.


Assuntos
Epitélio/fisiopatologia , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anfirregulina/genética , Anfirregulina/metabolismo , Fenômenos Biofísicos/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Receptores ErbB/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença , Humanos , Fibrose Pulmonar Idiopática/genética , Queratina-5/genética , Queratina-5/metabolismo , Pulmão/efeitos dos fármacos , Mucina-5B/genética , Mucina-5B/metabolismo , Quinazolinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Tirfostinas/farmacologia , Verteporfina/farmacologia , Proteínas de Sinalização YAP
7.
J Inflamm Res ; 13: 1305-1318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33447070

RESUMO

Idiopathic pulmonary fibrosis is an etiologically complex interstitial lung disease characterized by progressive scarring of the lungs with a subsequent decline in lung function. While much of the pathogenesis of IPF still remains unclear, it is now understood that genetic variation accounts for at least one-third of the risk of developing the disease. The single-most validated and most significant risk factor, genetic or otherwise, is a gain-of-function promoter variant in the MUC5B gene. While the functional impact of these IPF risk variants at the cellular and tissue levels are areas of active investigation, there is a growing body of evidence that these genetic variants may influence disease pathogenesis through modulation of innate immune processes.

8.
Nat Neurosci ; 21(4): 638-646, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507411

RESUMO

Recombinant rabies viral vectors have proven useful for applications including retrograde targeting of projection neurons and monosynaptic tracing, but their cytotoxicity has limited their use to short-term experiments. Here we introduce a new class of double-deletion-mutant rabies viral vectors that left transduced cells alive and healthy indefinitely. Deletion of the viral polymerase gene abolished cytotoxicity and reduced transgene expression to trace levels but left vectors still able to retrogradely infect projection neurons and express recombinases, allowing downstream expression of other transgene products such as fluorophores and calcium indicators. The morphology of retrogradely targeted cells appeared unperturbed at 1 year postinjection. Whole-cell patch-clamp recordings showed no physiological abnormalities at 8 weeks. Longitudinal two-photon structural and functional imaging in vivo, tracking thousands of individual neurons for up to 4 months, showed that transduced neurons did not die but retained stable visual response properties even at the longest time points imaged.


Assuntos
Córtex Cerebral/fisiologia , Vetores Genéticos/genética , Vias Neurais/fisiologia , Neurônios/metabolismo , Deleção de Sequência/genética , Tálamo/citologia , Potenciais de Ação/fisiologia , Fatores Etários , Análise de Variância , Animais , Feminino , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...