Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29414, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644878

RESUMO

A skin marker-based motion capture model providing measures of scapular rotations was recently developed. The aim of this study was to investigate the concurrent validity and the interrater reliability of the model. Shoulder range of motion (RoM) and activities of daily living (ADL) were tested in healthy volunteers with reflective markers on the scapula and thorax. To investigate the validity, the model was compared to simultaneous data collection from markers on a scapular intracortical pin. The interrater reliability was tested by comparing the skin marker-based protocol performed by two investigators. The mean root mean square error (RMSE) and the intraclass correlation coefficient (ICC(2,1)) were calculated to determine the validity and the interrater reliability, respectively. Eight subjects were included in the validity test: female/male = 2/6, mean (SD) age 35.0 (3.0) and BMI 23.4 (3.3). The mean RMSE of all scapular rotations ranged 2.3-6.7° during shoulder RoM and 2.4-7.6° during ADL. The highest errors were seen during sagittal and scapular plane flexions, hair combing and eating. The reliability test included twenty subjects: female/male = 8/12, mean (SD) age 31.4 (4.9) and BMI 22.9 (1.7). The ICC(2,1) for measuring protraction ranged 0.07-0.60 during RoM and 0.27-0.69 for ADL, for upward rotation the corresponding ICC(2,1) ranged 0.01-0.64 and 0.38-0.60, and anterior tilt 0.25-0.83 and 0.25-0.62. The validity and interrater reliability of the model are task dependent, and interpretation should be made with caution. The model provides quantitative measurements for objective assessment of scapular movements and can potentially supplement the clinical examination in certain motion tasks.

2.
Ergonomics ; 67(3): 275-287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37264800

RESUMO

Muscle fatigue is a primary risk factor in developing musculoskeletal disorders, which affect up to 93% musicians, especially violinists. Devices providing dynamic assistive support (DAS) to the violin-holding arm can lessen fatigue. The objective was to assess DAS effects on electromyography median frequency and joint kinematics during a fatiguing violin-playing task. Fifteen university-level and professional violinists were equipped with electromyography sensors and reflective markers to record upper-body muscle activity and kinematics. They played G scales with and without DAS until exhaustion. Paired t-tests assessed DAS effects on delta (final-initial) electromyography median frequencies and joint kinematics. DAS prevented the median frequency decrease of left supraspinatus, superior trapezius, and right medial deltoid, and increases in trunk rotation, left-wrist abduction, and right arm-elevation plane. DAS effects on kinematics were marginal due to retention of musical performance despite fatigue. However, DAS reduced fatigue of several muscles, which is promising for injury prevention.Practitioner summary: Violinists are greatly affected by musculoskeletal disorders. Effects of a mobility assistive device on muscle fatigue during violin playing was investigated. The assistive technology slowed down the development of fatigue for three neck/shoulder muscles, making assisted musical performance a promising avenue to prevent violinists' injuries.


Assuntos
Fadiga Muscular , Doenças Musculoesqueléticas , Humanos , Músculo Deltoide , Eletromiografia , Músculos do Pescoço
3.
Hum Factors ; 65(5): 923-941, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-34348514

RESUMO

OBJECTIVE: Assessing violinists' motor and musical performance adaptations to dynamic assistive support (DAS) provided by a passive device, using a force-field adaptation paradigm. BACKGROUND: Up to 93% of instrumentalists are affected by musculoskeletal injuries and particularly violinists. The repetitive nature of their work may lead to muscle fatigue, an injury risk factor. DAS has been used in occupational settings to minimize muscle activations and limit fatigue accumulation. DAS may however affect motor and musical performance. METHOD: Fifteen expert violinists were equipped with reflective markers and surface and intramuscular electromyography (EMG) sensors. Movements, muscle activations, and sound were recorded while participants completed three experimental conditions for which they continuously played a 13-s musical excerpt: Control (no DAS), Adaptation (DAS), and Washout (no DAS). DAS was applied at the left elbow (violin-holding side). Conditions were repeated 1 week later. Participants later listened to their own audio recordings playing with and without DAS and blindly assessed their performances. Linear mixed models were used to compare DAS and no-DAS conditions' kinematic, EMG, and musical performance data. RESULTS: DAS perturbed user kinematics but reduced mean activations of left medial deltoid and superior trapezius. Joint kinematic and muscle activation patterns between DAS and no DAS conditions however remained similar. Musical performance was unchanged with DAS. CONCLUSION: Though DAS modified violinists' upper-limb configurations, resulting kinematics were not detrimental to musical performance. Reduced muscle activations with DAS could contribute to lessening muscle fatigue. APPLICATION: Although its effect on muscle fatigue should be further investigated, DAS might be useful in preventing violinists' injuries.


Assuntos
Música , Humanos , Fenômenos Biomecânicos , Eletromiografia , Músculo Esquelético/fisiologia , Extremidade Superior , Fadiga Muscular
4.
Med Probl Perform Art ; 37(3): 135-142, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36053491

RESUMO

Comparison of bow-side kinematics in violinists is hindered by the scarcity of studies available. This makes meta-analysis impossible. This paper assesses the effect of music-based variables (bow stroke, tempo, and string played) on intra- and inter-participant variability in joint kinematics. The joint kinematics of nine high-level violinists were acquired via a motion capture system while they played a standardized piece of music involving contrasting bow strokes and strings at different tempi. Results were compared using linear mixed models using the root mean square (RMS) for each joint. We found highly individualized patterns of play, deduced from a low intra- but high inter-musician variability (4.2° vs 13.1° of normalized RMS) in joint kinematics. String played and bow stroke had the greatest effect on joint kinematics. The string played had the greatest impact on shoulder kinematics, and the bow stroke had the greatest impact on elbow and wrist kinematics. Based on these results, we propose guidelines for future research designed to study bow kinematics in the field of biomechanics of violin movements. For ease of comparison between studies and to limit the time and resources required, our main suggestions are to use repeated measures designs with a legato reference condition and to choose pieces of music spanning multiple strings.


Assuntos
Música , Fenômenos Biomecânicos , Humanos , Movimento , Projetos de Pesquisa
5.
Front Psychol ; 12: 769831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803855

RESUMO

Little is known about how bow mechanical characteristics objectively and quantitatively influence violinists' preferences and performance. Hypothesizing that the bow shape (i.e., camber) and mass distribution modifications would alter both violinists' appreciations of a bow and objective assessments of their performance, we recruited 10 professional violinists to play their own violin using 18 versions of a single bow, modified by combining three cambers and six mass distributions, in random order. A musical phrase, composed for this study, was played legato and spiccato at three octaves and two tempi. Each violinist scored all 18 bows. Then, experts assessed the recorded performances according to criteria inspired by basic musical analysis. Finally, 12 audio-descriptors were calculated on the same note from each trial, to objectivise potential acoustic differences. Statistical analysis (ANOVA) reveals that bow camber impacted the violinists' appreciations (p < 0.05), and that heavier bow tips gave lower scores for spiccato playing (p < 0.05). The expert evaluations reveal that playing with a lighter bow (tip or frog), or with a bow whose camber's maximum curvature is close to the frog, had a positive impact on some violinists' performance (NS to p < 0.001). The "camber-participant" interaction had significant effects on the violinists' appreciations (p < 0.01 to p < 0.001), on the expert's evaluation and on almost all the audio-descriptors (NS to p < 0.001). While trends were identified, multiple camber-participant interactions suggest that bow makers should provide a variety of cambers to satisfy different violinists.

6.
Front Bioeng Biotechnol ; 9: 642742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681174

RESUMO

Real-time biofeedback of muscle forces should help clinicians adapt their movement recommendations. Because these forces cannot directly be measured, researchers have developed numerical models and methods informed by electromyography (EMG) and body kinematics to estimate them. Among these methods, static optimization is the most computationally efficient and widely used. However, it suffers from limitation, namely: unrealistic joint torques computation, non-physiological muscle forces estimates and inconsistent for motions inducing co-contraction. Forward approaches, relying on numerical optimal control, address some of these issues, providing dynamically consistent estimates of muscle forces. However, they result in a high computational cost increase, apparently disqualifying them for real-time applications. However, this computational cost can be reduced by combining the implementation of a moving horizon estimation (MHE) and advanced optimization tools. Our objective was to assess the feasibility and accuracy of muscle forces estimation in real-time, using a MHE. To this end, a 4-DoFs arm actuated by 19 Hill-type muscle lines of action was modeled for simulating a set of reference motions, with corresponding EMG signals and markers positions. Excitation- and activation-driven models were tested to assess the effects of model complexity. Four levels of co-contraction, EMG noise and marker noise were simulated, to run the estimator under 64 different conditions, 30 times each. The MHE problem was implemented with three cost functions: EMG-markers tracking (high and low weight on markers) and marker-tracking with least-squared muscle excitations. For the excitation-driven model, a 7-frame MHE was selected as it allowed the estimator to run at 24 Hz (faster than biofeedback standard) while ensuring the lowest RMSE on estimates in noiseless conditions. This corresponds to a 3,500-fold speed improvement in comparison to state-of-the-art equivalent approaches. When adding experimental-like noise to the reference data, estimation error on muscle forces ranged from 1 to 30 N when tracking EMG signals and from 8 to 50 N (highly impacted by the co-contraction level) when muscle excitations were minimized. Statistical analysis was conducted to report significant effects of the problem conditions on the estimates. To conclude, the presented MHE implementation proved to be promising for real-time muscle forces estimation in experimental-like noise conditions, such as in biofeedback applications.

7.
Front Psychol ; 11: 1159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587549

RESUMO

Piano performance involves several levels of motor abundancy. Identification of kinematic strategies that enhance performance and reduce risks of practice-related musculoskeletal disorders (PRMD) represents an important research topic since more than half of professional pianists might suffer from PRMD during their career. Studies in biomechanics have highlighted the benefits of using proximal upper-limb joints to reduce the load on distal segments by effectively creating velocity and force at the finger-key interaction. If scientific research has documented postural and expressive features of pianists' trunk motion, there is currently a lack of scientific evidence assessing the role of trunk motion in sound production and in injury prevention. We address this gap by integrating motion of the pelvis and thorax in the analysis of both upper-limb linear velocities and joint angular contribution to endpoint velocities. Specifically, this study aims to assess kinematic features of different types of touch and articulation and the impact of trunk motion on these features. Twelve pianists performed repetitive loud and slow-paced keystrokes. They were asked to vary (i) body implication (use of trunk and upper-limb motion or use of only upper-limb motion), (ii) touch (struck touch, initiating the attack with the fingertip at a certain distance from the key surface, or pressed touch, initiating the attack with the fingertip in contact with the key surface), and (iii) articulation (staccato, short finger-key contact time, or tenuto, sustained finger-key contact time). Data were collected using a 3D motion capture system and a sound recording device. Results show that body implication, touch, and articulation modified kinematic features of loud keystrokes, which exhibited not only downward but also important forward segmental velocities (particularly in pressed touch and staccato articulation). Pelvic anterior rotation had a prominent role in the production of loud tones as it effectively contributed to creating forward linear velocities at the upper limb. The reported findings have implications for the performance, teaching, and research domains since they provide evidence of how pianists' trunk motion can actively contribute to the sound production and might not only be associated with either postural or expressive features.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32364798

RESUMO

Despite recent advances in algorithms for estimating muscle activities, static optimization remains the most used. Static optimization estimates muscle activations required to obtain a particular set of estimated kinematics. Although fast, static optimization may require considerable time for long trials. Improvements have been proposed in the past, but the current implementations are either accurate and slow (such as the most traditional implementation) or fast but less accurate (such as the linearized at maximal activations method used by OpenSim). Two innovative algorithms are proposed to improve both optimization time and accuracy of the static optimization. The first, designed to be fast, linearizes the constraint-i.e., constructing a constant constraint Jacobian-at the activations of the previous frame. The second, designed to be as accurate as possible, approaches the constraint Jacobian by cubic splines. Their performance and accuracy are compared to the traditional and OpenSim implementations. The linearized method performed as fast as the OpenSim implementation and was more accurate (0.3% of RMSE versus 5.9%). The spline method had excellent accuracy (0.1% of RMSE), but was 2X slower than the linearized approaches. Nevertheless, it was 100X faster than the traditional implementation. Our linearized method is therefore recommended when fast computation is needed, such as real-time applications, while the spline method is recommended otherwise.

9.
PLoS One ; 15(5): e0232677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379801

RESUMO

BACKGROUND: Customized foot orthoses (FOs) are designed based on foot posture and function, while the interaction between these metrics and FO deformation remains unknown due to technical problems. Our aim was to predict FO deformation under dynamic loading using an artificial intelligence (AI) approach, and to report the deformation of two FOs of different stiffness during walking. METHODS: Each FO was fixed on a plate, and six triad reflective markers were fitted on its contour, and 55 markers on its plantar surface. Manual loadings with known magnitude and application point were applied to deform "sport" and "regular" (stiffer) FOs in all regions (training session). Then, 13 healthy male subjects walked with the same FOs inside shoes, where the triad markers were visible by means of shoe holes (walking session). The marker trajectories were recorded using optoelectronic system. A neural network was trained to find the dependency between the orientation of triads on FO contour and the position of markers on its plantar surface. After tuning hyperparameters and evaluating the performance of the model, marker positions on FOs surfaces were predicted during walking for each subject. Statistical parametric mapping was used to compare the pattern of deformation between two FOs. RESULTS: Overall, the model showed an average error of <0.6 mm for predicting the marker positions on both FOs. The training setup was appropriate to simulate the range of triads' displacement and the peak loading on FOs during walking. Sport FO showed different pattern and significantly higher range of deformation during walking compared to regular FO. CONCLUSION: Our technique enables an indirect and accurate estimation of FO surface deformation during walking. The AI model was capable to make a distinction between two FOs with different stiffness and between subjects. This innovative approach can help to optimally customize the FO design.


Assuntos
Órtoses do Pé , Caminhada , Adulto , Fenômenos Biomecânicos , Pé/fisiopatologia , Voluntários Saudáveis , Humanos , Masculino , Postura , Pressão , Sapatos , Adulto Jovem
10.
Front Neurorobot ; 13: 48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379547

RESUMO

In the context of neuro-orthopedic pathologies affecting walking and thus patients' quality of life, understanding the mechanisms of gait deviations and identifying the causal motor impairments is of primary importance. Beside other approaches, neuromusculoskeletal simulations may be used to provide insight into this matter. To the best of our knowledge, no computational framework exists in the literature that allows for predictive simulations featuring muscle co-contractions, and the introduction of various types of perturbations during both healthy and pathological gait types. The aim of this preliminary study was to adapt a recently proposed EMG-marker tracking optimization process to a lower limb musculoskeletal model during equinus gait, a multiphase problem with contact forces. The resulting optimization method tracking EMG, ground reactions forces, and marker trajectories allowed an accurate reproduction of joint kinematics (average error of 5.4 ± 3.3 mm for pelvis translations, and 1.9 ± 1.3° for pelvis rotation and joint angles) and ensured good temporal agreement in muscle activity (the concordance between estimated and measured excitations was 76.8 ± 5.3 %) in a relatively fast process (3.88 ± 1.04 h). We have also highlighted that the tracking of ground reaction forces was possible and accurate (average error of 17.3 ± 5.5 N), even without the use of a complex foot-ground contact model.

11.
Ergonomics ; 62(5): 682-693, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30696384

RESUMO

Sex-related differences in work technique may contribute to increasing the risk of musculoskeletal joint disorders among women. In lifting tasks, sex differences have been reported for the trunk and lower limb, although women present a higher prevalence of shoulder disorders. We investigated sex differences in the upper limb technique during a lifting task. Trunk and upper limb kinematics were recorded in 27 women and 27 men lifting a box (6 or 12 kg) from hip to eye level. Work technique was quantified through the three-dimensional contribution of each joint to overall box height. The glenohumeral joint showed a higher contribution in women with a 6 kg box and wrist and elbow joints did with a 12 kg box, compared to men at either 6 or 12 kg. Sex differences occurred systematically above shoulder level. Our results argue for careful consideration of sex during ergonomic intervention, particularly during the overhead task. Practitioner Summary: We investigated the sex-related differences in upper limb technique during lifting tasks. Results highlight a sex-specific kinematic strategy above the shoulder level on the glenohumeral joint and on the wrist and elbow joints. To help reduce women's shoulder disorders in overhead task, ergonomic interventions should account for those differences. Abbreviations: DoF: degree-of-freedom; WR/EL: wrist and elbow; GH: glenohumeral; SC/AC: sternoclavicular and acromioclavicular; TR/PE: pelvo-thoracic.


Assuntos
Remoção , Articulação do Ombro/fisiologia , Extremidade Superior/fisiologia , Adolescente , Adulto , Articulação do Cotovelo/fisiologia , Feminino , Humanos , Masculino , Fatores Sexuais , Análise e Desempenho de Tarefas , Carga de Trabalho , Adulto Jovem
12.
Int Biomech ; 6(1): 47-53, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34042000

RESUMO

Intracortical bone pins are introduced as gold standard for analysing skeletal motion because of eliminating soft tissue artefact. However, excluding this methodological error might be in cost of intervening movement pattern by local anaesthesia and pain of external tool within body. The purpose of this study was to examine whether intracortical bone pins alter shoulder joint kinematics or coordination. Three subjects were analysed during arm elevation/depression in frontal and sagittal planes. Retroreflective skin markers captured the motion in two sessions, before and after inserting bone pins (SKIN and PIN sessions), respectively. Thoracohumeral and scapulothoracic kinematics and scapulohumeral rhythm (SHR) were compared between two sessions. Thoracohumeral exhibited lower elevation and internal rotation in PIN session especially close to maximum arm elevation. The highest differences were observed for scapulothoracic kinematics, with higher retraction during abduction as well as higher posterior tilt, lateral rotation and retraction during flexion in PIN session. In addition, no systematic changes in SHR between subjects was found. Statistically significant lower SHR in PIN session was observed over 87-100% of thoracohumeral elevation/depression cycle in frontal plane and over 25-61% in sagittal plane. Further studies should treat carefully toward the clinical validity of shoulder joint kinematics after inserting bone pins.

13.
J Biomech ; 72: 241-246, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29636176

RESUMO

Isokinetic dynamometers measure joint torques about a single fixed rotational axis. Previous studies yet suggested that muscles produce both tangential and radial forces during a movement, so that the contact forces exerted to perform this movement are multidirectional. Then, isokinetic dynamometers might neglect the torque components about the two other Euclidean space axes. Our objective was to experimentally quantify the shear forces impact on the overall shoulder torque, by comparing the dynamometer torque to the torque computed from the contact forces at the hand and elbow. Ten healthy women performed isokinetic maximal internal/external concentric/eccentric shoulder rotation movements. The hand and elbow contact forces were measured using two six-axis force sensors. The main finding is that the contact forces at the hand were not purely tangential to the direction of the movement (effectiveness indexes from 0.26 ±â€¯0.25 to 0.54 ±â€¯0.20), such that the resulting shoulder torque computed from the two force sensors was three-dimensional. Therefore, the flexion and abduction components of the shoulder torque measured by the isokinetic dynamometer were significantly underestimated (up to 94.9%). These findings suggest that musculoskeletal models parameters should not be estimated without accounting for the torques about the three space axes.


Assuntos
Modelos Biológicos , Articulação do Ombro/fisiologia , Adulto , Fenômenos Biomecânicos , Articulação do Cotovelo/fisiologia , Feminino , Mãos/fisiologia , Humanos , Movimento/fisiologia , Amplitude de Movimento Articular/fisiologia , Torque , Adulto Jovem
14.
J Biomech ; 68: 99-106, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29325902

RESUMO

The choice of the cost-function for predicting muscle forces during a movement remains a challenge, especially in patients with neuromuscular disorders. Forward dynamics-based optimisations mainly track joint kinematics or torques, combined with a least-excitation criterion. Tracking marker trajectories and/or electromyography (EMG) has rarely been proposed. Our objective was to determine the best tracking objective-function to accurately predict the upper-limb muscle forces. A musculoskeletal model was created and EMG was simulated to obtain a reference movement - a shoulder abduction. A Gaussian noise (mean = 0; standard deviation = 15%) was added to the simulated EMG. Another noise - corresponding to the actual soft tissue artefacts (STA) of experimental shoulder abduction movements - was added to the trajectories of the markers placed on the model. Muscle forces were estimated from these noisy data, using forward dynamics assisted by six non-linear least-squared objective-functions. These functions involved the tracking of marker trajectories, joint angles or torques, with and without EMG-tracking. All six approaches used the same musculoskeletal model and were solved using a direct multiple shooting algorithm. Finally, the predicted joint angles, muscle forces and activations were compared to the reference values, using root-mean-square errors (RMSe) and biases. The force RMSe of the approach tracking both marker trajectories and EMG (18.45 ±â€¯12.60 N) was almost five times lower than the one of the approach tracking only joint angles (82.37 ±â€¯66.26 N) or torques (85.10 ±â€¯116.40 N). Therefore, using EMG as a complementary tracking-data in forward dynamics seems to be promising for the estimation of muscle forces.


Assuntos
Modelos Biológicos , Contração Muscular , Músculos/fisiologia , Adulto , Algoritmos , Fenômenos Biomecânicos , Eletromiografia , Humanos , Movimento/fisiologia , Ombro/fisiologia , Torque
15.
PLoS One ; 12(12): e0189406, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244838

RESUMO

Ensuring glenohumeral stability during repetitive lifting tasks is a key factor to reduce the risk of shoulder injuries. Nevertheless, the literature reveals some lack concerning the assessment of the muscles that ensure glenohumeral stability during specific lifting tasks. Therefore, the purpose of this study was to assess the stabilization function of shoulder muscles during a lifting task. Kinematics and muscle electromyograms (n = 9) were recorded from 13 healthy adults during a bi-manual lifting task performed from the hip to the shoulder level. A generic upper-limb OpenSim model was implemented to simulate glenohumeral stability and instability by performing static optimizations with and without glenohumeral stability constraints. This procedure enabled to compute the level of shoulder muscle activity and forces in the two conditions. Without the stability constraint, the simulated movement was unstable during 74%±16% of the time. The force of the supraspinatus was significantly increased of 107% (p<0.002) when the glenohumeral stability constraint was implemented. The increased supraspinatus force led to greater compressive force (p<0.001) and smaller shear force (p<0.001), which contributed to improved glenohumeral stability. It was concluded that the supraspinatus may be the main contributor to glenohumeral stability during lifting task.


Assuntos
Remoção , Músculo Esquelético/fisiologia , Articulação do Ombro/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Contração Muscular , Adulto Jovem
16.
Comput Methods Biomech Biomed Engin ; 17(5): 507-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22757591

RESUMO

To determine the range of motion of a joint between an initial orientation and a final orientation, it is convenient to subtract initial joint angles from final joint angles, a method referred to as the vectorial approach. However, for three-dimensional movements, the vectorial approach is not mathematically correct. To determine the joint range of motion, the rotation matrix between the two orientations should be calculated, and angles describing the range of motion should be extracted from this matrix, a method referred to as the matrical approach. As the matrical approach is less straightforward to implement, it is of interest to identify situations in which the vectorial approach leads to insubstantial errors. In this study, the vectorial approach was compared to the matrical approach, and theoretical justification was given for situations in which the vectorial approach can reasonably be used. The main findings are that the vectorial approach can be used if (1) the motion is planar (Woltring HJ. 1994. 3-D attitude representation of human joints: a standardization proposal. J Biomech 27(12): 1399-1414), (2) the angles between the final and the initial orientation are small (Woltring HJ. 1991. Representation and calculation of 3-D joint movement. Hum Mov Sci 10(5): 603-616), (3) the angles between the initial orientation of the distal segment and the proximal segment are small and finally (4) when only one large angle occurs between the initial orientation of the distal segment and the proximal segment and the angle sequence is chosen in such a way that this large angle occurs on the first axis of rotation. These findings provide specific criteria to consider when choosing the angle sequence to use for movement analysis.


Assuntos
Amplitude de Movimento Articular , Humanos , Articulações/fisiologia , Modelos Teóricos , Movimento (Física) , Movimento , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...