Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 31(6): 245-54, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15221664

RESUMO

Fifty-five bacterial strains isolated from soil were screened for efficient poly-3-hydroxybutyrate (P3HB) biosynthesis from xylose. Three strains were also evaluated for the utilization of bagasse hydrolysate after different detoxification steps. The results showed that activated charcoal treatment is pivotal to the production of a hydrolysate easy to assimilate. Burkholderia cepacia IPT 048 and B. sacchari IPT 101 were selected for bioreactor studies, in which higher polymer contents and yields from the carbon source were observed with bagasse hydrolysate, compared with the use of analytical grade carbon sources. Polymer contents and yields, respectively, reached 62% and 0.39 g g(-1) with strain IPT 101 and 53% and 0.29 g g(-1) with strain IPT 048. A higher polymer content and yield from the carbon source was observed under P limitation, compared with N limitation, for strain IPT 101. IPT 048 showed similar performances in the presence of either growth-limiting nutrient. In high-cell-density cultures using xylose plus glucose under P limitation, both strains reached about 60 g l(-1) dry biomass, containing 60% P3HB. Polymer productivity and yield from this carbon source reached 0.47 g l(-1) h(-1) and 0.22 g g(-1), respectively.


Assuntos
Burkholderia/metabolismo , Glucose/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Álcoois Açúcares/metabolismo , Xilose/metabolismo , Biomassa , Reatores Biológicos , Burkholderia/enzimologia , Burkholderia/genética , Celulose , Hidrólise , Hidrolisados de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...