Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Pract ; 24(4): 366-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21984773

RESUMO

Castrate-resistant prostate cancer (CRPC) is a challenging aspect in the treatment of prostate cancer. Research has identified several pathways in the pathogenesis of CRPC. Several new agents targeting some of these pathways have shown promising data during clinical trials. In the area of androgen depletion, abiraterone acetate and MDV100 have been studied and have shown to decrease prostate-specific antigen (PSA) levels in phase I and II studies. Bevacizumab is a monoclonal antibody antiangiogenesis agent that targets vascular endothelial growth factor (VEGF) and has shown to decrease PSA levels in combination with other cytotoxic agents. Three agents, ixabepilone, patupilone, and sagopilone, in the class of epothilones (tubulin polymerizing antitumor agents), have shown moderate reductions in PSA levels and moderate adverse effects. The results of ongoing studies with these new treatment agents may offer viable alternatives to the traditional treatment of CRPC to decrease disease progression and improve overall survival.


Assuntos
Androstenóis/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Epotilonas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Moduladores de Tubulina/uso terapêutico , Androstenos , Bevacizumab , Ensaios Clínicos como Assunto , Humanos , Masculino
3.
Am J Physiol Endocrinol Metab ; 282(3): E688-94, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11832374

RESUMO

The effect of prolonged moderate-intensity exercise on human skeletal muscle AMP-activated protein kinase (AMPK)alpha1 and -alpha2 activity and acetyl-CoA carboxylase (ACCbeta) and neuronal nitric oxide synthase (nNOSmu) phosphorylation was investigated. Seven active healthy individuals cycled for 30 min at a workload requiring 62.8 +/- 1.3% of peak O(2) consumption (VO(2 peak)) with muscle biopsies obtained from the vastus lateralis at rest and at 5 and 30 min of exercise. AMPKalpha1 activity was not altered by exercise; however, AMPKalpha2 activity was significantly (P < 0.05) elevated after 5 min (approximately 2-fold), and further elevated (P < 0.05) after 30 min (approximately 3-fold) of exercise. ACCbeta phosphorylation was increased (P < 0.05) after 5 min (approximately 18-fold compared with rest) and increased (P < 0.05) further after 30 min of exercise (approximately 36-fold compared with rest). Increases in AMPKalpha2 activity were significantly correlated with both increases in ACCbeta phosphorylation and reductions in muscle glycogen content. Fat oxidation tended (P = 0.058) to increase progressively during exercise. Muscle creatine phosphate was lower (P < 0.05), and muscle creatine, calculated free AMP, and free AMP-to-ATP ratio were higher (P < 0.05) at both 5 and 30 min of exercise compared with those at rest. At 30 min of exercise, the values of these metabolites were not significantly different from those at 5 min of exercise. Phosphorylation of nNOSmu was variable, and despite the mean doubling with exercise, statistically significance was not achieved (P = 0.304). Western blots indicated that AMPKapproximately 2 was associated with both nNOSmu and ACCbeta consistent with them both being substrates of AMPKalpha2 in vivo. In conclusion, AMPKalpha2 activity and ACCbeta phosphorylation increase progressively during moderate exercise at approximately 60% of VO(2 peak) in humans, with these responses more closely coupled to muscle glycogen content than muscle AMP/ATP ratio.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Exercício Físico/fisiologia , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Monofosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Tecido Adiposo/metabolismo , Adulto , Ciclismo , Biópsia , Creatina/análise , Feminino , Glicogênio/análise , Glicogênio/metabolismo , Humanos , Ácido Láctico/análise , Masculino , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Oxirredução , Consumo de Oxigênio , Fosfocreatina/análise , Fosforilação
6.
J Biol Chem ; 276(40): 37700-7, 2001 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-11479308

RESUMO

Specific cellular stresses, including hyperosmotic stress, caused a dramatic but reversible cytoplasmic accumulation of the otherwise nuclear 45-kDa variant of the protein-tyrosine phosphatase TCPTP (TC45). In the cytoplasm, TC45 dephosphorylated the epidermal growth factor receptor and down-regulated the hyperosmotic stress-induced activation of the c-Jun N-terminal kinase. The hyperosmotic stress-induced nuclear exit of TC45 was not inhibited by leptomycin B, indicating that TC45 nuclear exit was independent of the exportin CRM-1. Moreover, hyperosmotic stress did not induce the cytoplasmic accumulation of a green fluorescent protein-TC45 fusion protein that was too large to diffuse across the nuclear pore. Our results indicate that TC45 nuclear exit may occur by passive diffusion and that cellular stress may induce the cytoplasmic accumulation of TC45 by inhibiting nuclear import. Neither p42(Erk2) nor the stress-activated c-Jun N-terminal kinase or p38 mediated the stress-induced redistribution of TC45. We found that only those stresses that stimulated the metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) induced the redistribution of TC45. In addition, specific pharmacological activation of the AMPK was sufficient to cause the accumulation of TC45 in the cytoplasm. Our studies indicate that specific stress-activated signaling pathways that involve the AMPK can alter the nucleocytoplasmic distribution of TC45 and thus regulate TC45 function in vivo.


Assuntos
Núcleo Celular/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptores Citoplasmáticos e Nucleares , Células 3T3 , Proteínas Quinases Ativadas por AMP , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células COS , Tamanho Celular , Células Cultivadas , Citoplasma/enzimologia , Citosol/metabolismo , Difusão , Ativação Enzimática , Receptores ErbB/metabolismo , Células HeLa , Humanos , Carioferinas/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Complexos Multienzimáticos/metabolismo , Pressão Osmótica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Transdução de Sinais/fisiologia , Frações Subcelulares , Proteína Exportina 1
7.
Vet Rec ; 148(19): 606, 2001 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-11386450
8.
J Biol Chem ; 276(19): 16587-91, 2001 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-11340086

RESUMO

Endothelial nitric-oxide synthase (eNOS) is phosphorylated at Ser-1179 (bovine sequence) by Akt after growth factor or shear stress stimulation of endothelial cells, resulting in increased eNOS activity. Purified eNOS is also phosphorylated at Thr-497 by purified AMP-activated protein kinase, resulting in decreased eNOS activity. We investigated whether bradykinin (BK) stimulation of bovine aortic endothelial cells (BAECs) regulates eNOS through Akt activation and Ser-1179 or Thr-497 phosphorylation. Akt is transiently activated in BK-stimulated BAECs. Activation is blocked completely by wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase, suggesting that Akt activation occurs downstream from phosphatidylinositol 3-kinase. BK stimulates a transient phosphorylation of eNOS at Ser-1179 that is correlated temporally with a transient dephosphorylation of eNOS at Thr-497. Phosphorylation at Ser-1179, but not dephosphorylation at Thr-497, is blocked by wortmannin and LY294002. BK also stimulates a transient nitric oxide (NO) release from BAECs with a time-course similar to Ser-1179 phosphorylation and Thr-497 dephosphorylation. NO release is not altered by wortmannin. BK-stimulated dephosphorylation of Thr-497 and NO release are blocked by the calcineurin inhibitor, cyclosporin A. These data suggest that BK activation of eNOS in BAECs primarily involves deinhibition of the enzyme through calcineurin-mediated dephosphorylation at Thr-497.


Assuntos
Bradicinina/farmacologia , Endotélio Vascular/enzimologia , Óxido Nítrico Sintase/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Androstadienos/farmacologia , Animais , Aorta , Inibidores de Calcineurina , Bovinos , Cromonas/farmacologia , Ciclosporina/farmacologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Cinética , Morfolinas/farmacologia , Óxido Nítrico Sintase Tipo III , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Wortmanina
9.
J Biol Chem ; 276(21): 17625-8, 2001 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-11292821

RESUMO

Endothelial nitric-oxide synthase (eNOS) is an important regulatory enzyme in the cardiovascular system catalyzing the production of NO from arginine. Multiple protein kinases including Akt/PKB, cAMP-dependent protein kinase (PKA), and the AMP-activated protein kinase (AMPK) activate eNOS by phosphorylating Ser-1177 in response to various stimuli. During VEGF signaling in endothelial cells, there is a transient increase in Ser-1177 phosphorylation coupled with a decrease in Thr-495 phosphorylation that reverses over 10 min. PKC signaling in endothelial cells inhibits eNOS activity by phosphorylating Thr-495 and dephosphorylating Ser-1177 whereas PKA signaling acts in reverse by increasing phosphorylation of Ser-1177 and dephosphorylation of Thr-495 to activate eNOS. Both phosphatases PP1 and PP2A are associated with eNOS. PP1 is responsible for dephosphorylation of Thr-495 based on its specificity for this site in both eNOS and the corresponding synthetic phosphopeptide whereas PP2A is responsible for dephosphorylation of Ser-1177. Treatment of endothelial cells with calyculin selectively blocks PKA-mediated dephosphorylation of Thr-495 whereas okadaic acid selectively blocks PKC-mediated dephosphorylation of Ser-1177. These results show that regulation of eNOS activity involves coordinated signaling through Ser-1177 and Thr-495 by multiple protein kinases and phosphatases.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase/metabolismo , Proteína Quinase C/metabolismo , Animais , Bovinos , Células Cultivadas , Óxido Nítrico Sintase Tipo III , Fosforilação , Transdução de Sinais
10.
Am J Physiol Endocrinol Metab ; 279(5): E1202-6, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11052978

RESUMO

AMP-activated protein kinase (AMPK) is a metabolic stress-sensing protein kinase responsible for coordinating metabolism and energy demand. In rodents, exercise accelerates fatty acid metabolism, enhances glucose uptake, and stimulates nitric oxide (NO) production in skeletal muscle. AMPK phosphorylates and inhibits acetyl-coenzyme A (CoA) carboxylase (ACC) and enhances GLUT-4 translocation. It has been reported that human skeletal muscle malonyl-CoA levels do not change in response to exercise, suggesting that other mechanisms besides inhibition of ACC may be operating to accelerate fatty acid oxidation. Here, we show that a 30-s bicycle sprint exercise increases the activity of the human skeletal muscle AMPK-alpha1 and -alpha2 isoforms approximately two- to threefold and the phosphorylation of ACC at Ser(79) (AMPK phosphorylation site) approximately 8.5-fold. Under these conditions, there is also an approximately 5.5-fold increase in phosphorylation of neuronal NO synthase-mu (nNOSmu;) at Ser(1451). These observations support the concept that inhibition of ACC is an important component in stimulating fatty acid oxidation in response to exercise and that there is coordinated regulation of nNOSmu to protect the muscle from ischemia/metabolic stress.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Complexos Multienzimáticos/metabolismo , Contração Muscular , Músculo Esquelético/enzimologia , Óxido Nítrico Sintase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP , Adulto , Biópsia , Ativação Enzimática , Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Humanos , Isoenzimas/metabolismo , Masculino , Óxido Nítrico Sintase Tipo I , Oxirredução , Consumo de Oxigênio , Fosforilação
13.
Vet Rec ; 147(24): 695-6, 2000 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-11132680
14.
Vet Rec ; 145(17): 503, 1999 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-10596877
15.
FEBS Lett ; 460(2): 343-8, 1999 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-10544261

RESUMO

A heterotrimeric member of the AMP-activated protein kinase (AMPK) isoenzyme family was purified from rat skeletal muscle by immunoaffinity chromatography, consisting of an alpha2 catalytic and two non-catalytic subunits, beta2 and gamma1. The AMPK beta2 cDNA (271 amino acids (aa), molecular weight (MW)=30¿ omitted¿307, pI 6. 3) was cloned from skeletal muscle and found to share an overall identity of 70% with beta1 (270 aa, MW=30¿ omitted¿475, pI 6.0). In the liver AMPK beta1 subunit, Ser-182 is constitutively phosphorylated whereas in skeletal muscle beta2 isoform, we find that Ser-182 is only partially phosphorylated. In addition, the autophosphorylation sites Ser-24, Ser-25 found in the beta1 are replaced by Ala-Glu in the beta2 isoform. beta2 contains seven more Ser and one less Thr residues than beta1, raising the possibility of differential post-translational regulation. Immunoblot analysis further revealed that soleus muscle (slow twitch) contains exclusively beta1 associated with alpha2, whereas extensor digitorum longus muscle alpha2 (EDL, fast twitch) associates with beta2 as well as beta1. Sequence analysis revealed that glycogen synthase, a known AMPK substrate, co-immunoprecipitated with the AMPK alpha2beta2gamma1 complex.


Assuntos
Músculo Esquelético/enzimologia , Proteínas Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/metabolismo , Immunoblotting , Isoenzimas , Fígado/enzimologia , Masculino , Dados de Sequência Molecular , Complexos Multienzimáticos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Ratos , Ratos Sprague-Dawley , Homologia de Sequência de Aminoácidos
16.
Curr Biol ; 9(15): 845-8, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10469573

RESUMO

Endothelial nitric oxide synthase (eNOS) is an important modulator of angiogenesis and vascular tone [1]. It is stimulated by treatment of endothelial cells in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent fashion by insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) [2] [3] and is activated by phosphorylation at Ser1177 in the sequence RIRTQS(1177)F (in the single-letter amino acid code) [4]. The protein kinase Akt is an important downstream target of PI 3-kinase [5] [6], regulating VEGF-stimulated endothelial cell survival [7]. Akt phosphorylates substrates within a defined motif [8], which is present in the sequence surrounding Ser1177 in eNOS. Both Akt [5] [6] and eNOS [9] are localized to, and activated at, the plasma membrane. We found that purified Akt phosphorylated cardiac eNOS at Ser1177, resulting in activation of eNOS. Phosphorylation at this site was stimulated by treatment of bovine aortic endothelial cells (BAECs) with VEGF or IGF-1, and Akt was activated in parallel. Preincubation with wortmannin, an inhibitor of Akt signalling, reduced VEGF- or IGF-1-induced Akt activity and eNOS phosphorylation. Akt was detected in immunoprecipitates of eNOS from BAECs, and eNOS in immunoprecipitates of Akt, indicating that the two enzymes associate in vivo. It is thus apparent that Akt directly activates eNOS in endothelial cells. These results strongly suggest that Akt has an important role in the regulation of normal angiogenesis and raise the possibility that the enhanced activity of this kinase that occurs in carcinomas may contribute to tumor vascularization and survival.


Assuntos
Óxido Nítrico Sintase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Linhagem Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Crescimento Endotelial/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Linfocinas/farmacologia , Dados de Sequência Molecular , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo III , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Transfecção , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
17.
Nat Struct Biol ; 6(5): 442-8, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10331871

RESUMO

Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an alpha-beta sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.


Assuntos
Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalização , Cristalografia por Raios X , Dimerização , Evolução Molecular , Humanos , Oxigenases de Função Mista/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/enzimologia , Fenilcetonúrias/genética , Fosforilação , Conformação Proteica , Ratos , Homologia de Sequência de Aminoácidos
18.
Trends Biochem Sci ; 24(1): 22-5, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10087918

RESUMO

The AMP-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that is found in all eukaryotes. AMPK activity is regulated by vigorous exercise, nutrient starvation and ischemia/hypoxia, and modulates many aspects of mammalian cell metabolism. The AMPK yeast homolog, Snf1p, plays a major role in adaption to glucose deprivation. In mammals, AMPK also has diverse roles that extend from energy metabolism through to transcriptional control.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Colesterol/biossíntese , Creatina Quinase/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Complexos Multienzimáticos/química , Conformação Proteica , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo
19.
Vet Rec ; 144(6): 158-9, 1999 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-10074669
20.
FEBS Lett ; 443(3): 285-9, 1999 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-10025949

RESUMO

The AMP-activated protein kinase (AMPK) in rat skeletal and cardiac muscle is activated by vigorous exercise and ischaemic stress. Under these conditions AMPK phosphorylates and inhibits acetyl-coenzyme A carboxylase causing increased oxidation of fatty acids. Here we show that AMPK co-immunoprecipitates with cardiac endothelial NO synthase (eNOS) and phosphorylates Ser-1177 in the presence of Ca2+-calmodulin (CaM) to activate eNOS both in vitro and during ischaemia in rat hearts. In the absence of Ca2+-calmodulin, AMPK also phosphorylates eNOS at Thr-495 in the CaM-binding sequence, resulting in inhibition of eNOS activity but Thr-495 phosphorylation is unchanged during ischaemia. Phosphorylation of eNOS by the AMPK in endothelial cells and myocytes provides a further regulatory link between metabolic stress and cardiovascular function.


Assuntos
Endotélio Vascular/enzimologia , Complexos Multienzimáticos/metabolismo , Óxido Nítrico Sintase/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Quinases Ativadas por AMP , Sequência de Aminoácidos , Animais , Aorta , Calmodulina/metabolismo , Bovinos , Endotélio Vascular/citologia , Ativação Enzimática , Cinética , Fígado/enzimologia , Dados de Sequência Molecular , Isquemia Miocárdica/enzimologia , Miocárdio/enzimologia , Óxido Nítrico Sintase Tipo III , Fosforilação , Testes de Precipitina , Ligação Proteica , Ratos , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...