Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 12(1): 197-205, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20653902

RESUMO

Inheritance of pollen colour was studied in sunflower (Helianthus annuus L.) using three distinct pollen colour morphs: orange, yellow and white-cream. Orange is the most common colour of sunflower pollen, while the yellow morph is less frequent. These two types were observed in the inbred lines F11 and EF2L, respectively. White-cream pollen is a rare phenotype in nature, and was identified in a mutant, named white-cream pollen, recovered in the R(2) generation of an in vitro regenerated plant. The F11 inbred line was used as starting material for in vitro regeneration. The carotenoid content of these three pollen morphs differed, and was extremely reduced in white-cream pollen. The phenotype of F(1) populations obtained by reciprocal crosses revealed that the orange trait was dominant over both white-cream and yellow. Segregation of F(2) populations of both crosses, orange x yellow and orange x white-cream, approached a 3:1 ratio, indicating the possibility of simple genetic control. By contrast, a complementation cross between the two lines with white-cream and yellow pollen produced F(1) plants with orange pollen. The F(2) populations of this cross-segregated as nine orange: four white-cream: four yellow. A model conforming to the involvement of two unlinked genes, here designated Y and O, can explain these results. Accessions with yellow pollen would have the genotype YYoo, the white-cream pollen mutant would have yyOO and the accession with orange pollen would have YYOO. Within F(2) populations of the cross white-cream x yellow a new genotype, yyoo, with white-cream pollen was scored. The results of the cross yyoo x YYoo produced only F(1) plants with yellow pollen, supporting a recessive epistatic model of inheritance between two loci. In this model, yy is epistatic on O and o. In F(2) populations, the distributions of phenotypic classes suggested that the genetic control of carotenoid content is governed by major genes, with large effects segregating in a background of polygenic variation. These three pollen morphs can provide insight into the sequence in which genes act, as well into the biochemical pathway controlling carotenoid biosynthesis in anthers and the transfer of these different pigments into pollenkitt.


Assuntos
Carotenoides/genética , Helianthus/genética , Padrões de Herança , Pólen/genética , Cruzamentos Genéticos , Pigmentação/genética , Espectrofotometria
2.
Ann Bot ; 103(5): 735-47, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19151043

RESUMO

BACKGROUND AND AIMS: The clone EMB-2 of the interspecific hybrid Helianthus annuus x H. tuberosus provides an interesting system to study molecular and physiological aspects of somatic embryogenesis. Namely, in addition to non-epiphyllous (NEP) leaves that expand normally, EMB-2 produces epiphyllous (EP) leaves bearing embryos on the adaxial surface. This clone was used to investigate if the ectopic expression of H. annuus LEAFY COTYLEDON1-LIKE (Ha-L1L) gene and auxin activity are correlated with the establishment of embryogenic competence. METHODS: Ha-L1L expression was evaluated by semi-quantitative RT-PCR and in situ hybridization. The endogenous level and spatial distribution of free indole-3-acetic acid (IAA) were estimated by a capillary gas chromatography-mass spectrometry-selected ion monitoring method and an immuno-cytochemical approach. KEY RESULTS: Ectopic expression of Ha-L1L was detected in specific cell domains of the adaxial epidermis of EP leaves prior to the development of ectopic embryos. Ha-L1L was expressed rapidly when NEP leaves were induced to regenerate somatic embryos by in vitro culture. Differences in auxin distribution pattern rather than in absolute level were observed between EP and A-2 leaves. More precisely, a strong IAA immuno-signal was detected in single cells or in small groups of cells along the epidermis of EP leaves and accompanied the early stages of embryo development. Changes in auxin level and distribution were observed in NEP leaves induced to regenerate by in vitro culture. Exogenous auxin treatments lightly influenced Ha-L1L transcript levels in spite of an enhancement of the regeneration frequency. CONCLUSIONS: In EP leaves, Ha-L1L activity marks the putative founder cells of ectopic embryos. Although the ectopic expression of Ha-L1L seems to be not directly mediated by auxin levels per se, it was demonstrated that localized Ha-L1L expression and IAA accumulation in leaf epidermis domains represent early events of somatic embryogenesis displayed by the epiphyllous EMB-2 clone.


Assuntos
Cruzamentos Genéticos , Desenvolvimento Embrionário , Genes de Plantas , Helianthus/embriologia , Helianthus/genética , Ácidos Indolacéticos/metabolismo , Folhas de Planta/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Helianthus/efeitos dos fármacos , Hibridização Genética/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/genética , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/efeitos dos fármacos
3.
Cell Biol Int ; 31(10): 1280-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17490899

RESUMO

In plant, post-embryonic development relies on the activities of indeterminate cell populations termed meristems, spatially clustered cell lineages, wherein a subset divides indeterminately. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent cells offsets the output of differentiating cells. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the plant meristems and play important roles in maintaining meristematic cell identity. We have analyzed the expression pattern of HtKNOT1, a class I KNOX gene of Helianthus tuberosus, in stems, inflorescence meristems, floral meristems and floral organs. HtKNOT1 is expressed in cambial cells, phloem cells and xylematic parenchyma within apical stem internodes, while in basal internodes HtKNOT1 expression was restricted to the presumptive initials and recently derived phloem cells. In the reproductive phase, HtKNOT1 mRNAs were detected in both the inflorescence and floral meristems as well within lateral organ primordia (i.e. floral bracts, petals, stamens and carpels). In more differentiated flowers, the expression of HtKNOT1 was restricted to developing ovules and pollen mother cells. HtKNOT1 may play a dual role being required to maintain the meristem initials as well as initiating differentiation and/or conferring new cell identity. In particular, it is possible that HtKNOT1 cooperates at floral level with additional factors that more specifically control floral organs and pollen development in H. tuberosus.


Assuntos
Diferenciação Celular , Flores/química , Regulação da Expressão Gênica de Plantas , Helianthus/química , Proteínas de Homeodomínio/metabolismo , Meristema/química , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Hibridização In Situ , Floema/química , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Ann Bot ; 92(1): 145-51, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12824073

RESUMO

A variant clone of the tetraploid (2n = 4x = 68) interspecific hybrid Helianthus annuus x H. tuberosus derived by in vitro tissue culture showed a deviation from the usual pattern of organization of the plant body. This variant developed shoot-like structures and somatic embryos from intact adventitious roots of in vitro-grown plantlets. The morphogenetic structures were not normally able to differentiate complete plants. They did show cellular proliferation with the inception of additional secondary embryos, leaf-like structures and unorganized masses of callus. Nevertheless, some ectopic structures isolated from roots and transferred onto fresh basal medium without growth regulators were able to produce plantlets that exhibited the same phenotype as the original clone. Histological analyses demonstrate that they originate from cortical cells in association with the development of lateral root primordia.


Assuntos
Helianthus/embriologia , Helianthus/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Técnicas de Cultura , Helianthus/anatomia & histologia , Helianthus/citologia , Hibridização Genética , Fenótipo , Raízes de Plantas/citologia , Brotos de Planta/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...