Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 546, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087069

RESUMO

Antibiotic persistence describes the presence of phenotypic variants within an isogenic bacterial population that are transiently tolerant to antibiotic treatment. Perturbations of metabolic homeostasis can promote antibiotic persistence, but the precise mechanisms are not well understood. Here, we use laboratory evolution, population-wide sequencing and biochemical characterizations to identify mutations in respiratory complex I and discover how they promote persistence in Escherichia coli. We show that persistence-inducing perturbations of metabolic homeostasis are associated with cytoplasmic acidification. Such cytoplasmic acidification is further strengthened by compromised proton pumping in the complex I mutants. While RpoS regulon activation induces persistence in the wild type, the aggravated cytoplasmic acidification in the complex I mutants leads to increased persistence via global shutdown of protein synthesis. Thus, we propose that cytoplasmic acidification, amplified by a compromised complex I, can act as a signaling hub for perturbed metabolic homeostasis in antibiotic persisters.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mutação , Biossíntese de Proteínas/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Canais Iônicos , Lipossomos , Testes de Sensibilidade Microbiana , Domínios Proteicos , Proteômica , Regulon/efeitos dos fármacos , Fator sigma/metabolismo
2.
ISME J ; 13(5): 1239-1251, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30647458

RESUMO

Persisters are transiently antibiotic-tolerant cells that complicate the treatment of bacterial infections. Both theory and experiments have suggested that persisters facilitate genetic resistance by constituting an evolutionary reservoir of viable cells. Here, we provide evidence for a strong positive correlation between persistence and the likelihood to become genetically resistant in natural and lab strains of E. coli. This correlation can be partly attributed to the increased availability of viable cells associated with persistence. However, our data additionally show that persistence is pleiotropically linked with mutation rates. Our theoretical model further demonstrates that increased survival and mutation rates jointly affect the likelihood of evolving clinical resistance. Overall, these results suggest that the battle against antibiotic resistance will benefit from incorporating anti-persister therapies.


Assuntos
Farmacorresistência Bacteriana/genética , Taxa de Mutação , Bactérias/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Evolução Molecular , Viabilidade Microbiana
3.
Drug Resist Updat ; 29: 76-89, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27912845

RESUMO

Any bacterial population harbors a small number of phenotypic variants that survive exposure to high concentrations of antibiotic. Importantly, these so-called 'persister cells' compromise successful antibiotic therapy of bacterial infections and are thought to contribute to the development of antibiotic resistance. Intriguingly, drug-tolerant persisters have also been identified as a factor underlying failure of chemotherapy in tumor cell populations. Recent studies have begun to unravel the complex molecular mechanisms underlying persister formation and revolve around stress responses and toxin-antitoxin modules. Additionally, in vitro evolution experiments are revealing insights into the evolutionary and adaptive aspects of this phenotype. Furthermore, ever-improving experimental techniques are stimulating efforts to investigate persisters in their natural, infection-associated, in vivo environment. This review summarizes recent insights into the molecular mechanisms of persister formation, explains how persisters complicate antibiotic treatment of infections, and outlines emerging strategies to combat these tolerant cells.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Estresse Fisiológico/efeitos dos fármacos , Sistemas Toxina-Antitoxina/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Células Clonais , Resistencia a Medicamentos Antineoplásicos/genética , Interação Gene-Ambiente , Heterogeneidade Genética , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Seleção Genética , Processos Estocásticos , Estresse Fisiológico/genética , Sistemas Toxina-Antitoxina/genética
4.
Antimicrob Agents Chemother ; 60(8): 4630-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185802

RESUMO

Health care-associated infections present a major threat to modern medical care. Six worrisome nosocomial pathogens-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.-are collectively referred to as the "ESKAPE bugs." They are notorious for extensive multidrug resistance, yet persistence, or the phenotypic tolerance displayed by a variant subpopulation, remains underappreciated in these pathogens. Importantly, persistence can prevent eradication of antibiotic-sensitive bacterial populations and is thought to act as a catalyst for the development of genetic resistance. Concentration- and time-dependent aminoglycoside killing experiments were used to investigate persistence in the ESKAPE pathogens. Additionally, a recently developed method for the experimental evolution of persistence was employed to investigate adaptation to high-dose, extended-interval aminoglycoside therapy in vitro We show that ESKAPE pathogens exhibit biphasic killing kinetics, indicative of persister formation. In vitro cycling between aminoglycoside killing and persister cell regrowth, evocative of clinical high-dose extended-interval therapy, caused a 37- to 213-fold increase in persistence without the emergence of resistance. Increased persistence also manifested in biofilms and provided cross-tolerance to different clinically important antibiotics. Together, our results highlight a possible drawback of intermittent, high-dose antibiotic therapy and suggest that clinical diagnostics might benefit from taking into account persistence.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Aminoglicosídeos/farmacologia , Enterobacter/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Humanos
6.
Mol Cell ; 59(1): 9-21, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26051177

RESUMO

Within bacterial populations, a small fraction of persister cells is transiently capable of surviving exposure to lethal doses of antibiotics. As a bet-hedging strategy, persistence levels are determined both by stochastic induction and by environmental stimuli called responsive diversification. Little is known about the mechanisms that link the low frequency of persisters to environmental signals. Our results support a central role for the conserved GTPase Obg in determining persistence in Escherichia coli in response to nutrient starvation. Obg-mediated persistence requires the stringent response alarmone (p)ppGpp and proceeds through transcriptional control of the hokB-sokB type I toxin-antitoxin module. In individual cells, increased Obg levels induce HokB expression, which in turn results in a collapse of the membrane potential, leading to dormancy. Obg also controls persistence in Pseudomonas aeruginosa and thus constitutes a conserved regulator of antibiotic tolerance. Combined, our findings signify an important step toward unraveling shared genetic mechanisms underlying persistence.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/biossíntese , Farmacorresistência Bacteriana/fisiologia , Proteínas de Escherichia coli/biossíntese , Escherichia coli/genética , Proteínas de Ligação ao GTP/genética , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Membrana Celular/fisiologia , Proteínas de Escherichia coli/genética , Potenciais da Membrana/genética , Testes de Sensibilidade Microbiana , Estrutura Terciária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...