Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1198222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954875

RESUMO

Repetitive transcranial magnetic stimulation (TMS) is widely used in neuroscience and clinical settings to modulate human cortical activity. The effects of TMS on neural activity depend on the excitability of specific neural populations at the time of stimulation. Accordingly, the brain state at the time of stimulation may influence the persistent effects of repetitive TMS on distal brain activity and associated behaviors. We applied intermittent theta burst stimulation (iTBS) to a region in the posterior parietal cortex (PPC) associated with grasp control to evaluate the interaction between stimulation and brain state. Across two experiments, we demonstrate the immediate responses of motor cortex activity and motor performance to state-dependent parietal stimulation. We randomly assigned 72 healthy adult participants to one of three TMS intervention groups, followed by electrophysiological measures with TMS and behavioral measures. Participants in the first group received iTBS to PPC while performing a grasping task concurrently. Participants in the second group received iTBS to PPC while in a task-free, resting state. A third group of participants received iTBS to a parietal region outside the cortical grasping network while performing a grasping task concurrently. We compared changes in motor cortical excitability and motor performance in the three stimulation groups within an hour of each intervention. We found that parietal stimulation during a behavioral manipulation that activates the cortical grasping network increased downstream motor cortical excitability and improved motor performance relative to stimulation during rest. We conclude that constraining the brain state with a behavioral task during brain stimulation has the potential to optimize plasticity induction in cortical circuit mechanisms that mediate movement processes.

2.
Neuroimage ; 263: 119589, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030062

RESUMO

Most neuroimaging studies of brain function analyze data in normalized space to identify regions of common activation across participants. These studies treat interindividual differences in brain organization as noise, but this approach can obscure important information about the brain's functional architecture. Recently, a number of studies have adopted a person-specific approach that aims to characterize these individual differences and explore their reliability and implications for behavior. A subset of these studies has taken a precision imaging approach that collects multiple hours of data from each participant to map brain function on a finer scale. In this review, we provide a broad overview of how person-specific and precision imaging techniques have used resting-state measures to examine individual differences in the brain's organization and their impact on behavior, followed by how task-based activity continues to add detail to these discoveries. We argue that person-specific and precision approaches demonstrate substantial promise in uncovering new details of the brain's functional organization and its relationship to behavior in many areas of cognitive neuroscience. We also discuss some current limitations in this new field and some new directions it may take.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Reprodutibilidade dos Testes , Encéfalo/fisiologia , Neuroimagem
3.
J Vis Exp ; (156)2020 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-32150170

RESUMO

Understanding interactions between brain areas is important for the study of goal-directed behavior. Functional neuroimaging of brain connectivity has provided important insights into fundamental processes of the brain like cognition, learning, and motor control. However, this approach cannot provide causal evidence for the involvement of brain areas of interest. Transcranial magnetic stimulation (TMS) is a powerful, noninvasive tool for studying the human brain that can overcome this limitation by transiently modifying brain activity. Here, we highlight recent advances using a paired-pulse, dual-site TMS method with two coils that causally probes cortico-cortical interactions in the human motor system during different task contexts. Additionally, we describe a dual-site TMS protocol based on cortical paired associative stimulation (cPAS) that transiently enhances synaptic efficiency in two interconnected brain areas by applying repeated pairs of cortical stimuli with two coils. These methods can provide a better understanding of the mechanisms underlying cognitive-motor function as well as a new perspective on manipulating specific neural pathways in a targeted fashion to modulate brain circuits and improve behavior. This approach may prove to be an effective tool to develop more sophisticated models of brain-behavior relations and improve diagnosis and treatment of many neurological and psychiatric disorders.


Assuntos
Atividade Motora/fisiologia , Vias Neurais/fisiologia , Estimulação Magnética Transcraniana , Adulto , Encéfalo/fisiologia , Cognição , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...