Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 41(1): e106459, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34806773

RESUMO

In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Aprendizagem/fisiologia , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Integrases/metabolismo , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/metabolismo , Sítio de Iniciação de Transcrição , Transcriptoma/genética
2.
Sci Adv ; 7(38): eabc6792, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524839

RESUMO

Increase in the size of human neocortex­acquired in evolution­accounts for the unique cognitive capacity of humans. This expansion reflects the evolutionarily enhanced proliferative ability of basal progenitors (BPs), including the basal radial glia and basal intermediate progenitors (bIPs) in mammalian cortex, which may have been acquired through epigenetic alterations in BPs. However, how the epigenome in BPs differs across species is not known. Here, we report that histone H3 acetylation is a key epigenetic regulation in bIP amplification and cortical expansion. Through epigenetic profiling of sorted bIPs, we show that histone H3 lysine 9 acetylation (H3K9ac) is low in murine bIPs and high in human bIPs. Elevated H3K9ac preferentially increases bIP proliferation, increasing the size and folding of the normally smooth mouse neocortex. H3K9ac drives bIP amplification by increasing expression of the evolutionarily regulated gene, Trnp1, in developing cortex. Our findings demonstrate a previously unknown mechanism that controls cortical architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...