Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Med Res Rev ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808959

RESUMO

5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.

3.
Int J Eat Disord ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650547

RESUMO

OBJECTIVE: Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD: Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS: The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION: The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE: Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.

4.
Int J Eat Disord ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456603

RESUMO

OBJECTIVE: Test the efficacy of the selective orexin 1 receptor (OX1R) antagonist (SO1RA) nivasorexant in an animal model of binge-eating disorder (BED) and study its dose-response relationship considering free brain concentrations and calculated OX1R occupancy. Compare nivasorexant's profile to that of other, structurally diverse SO1RAs. Gain understanding of potential changes in orexin-A (OXA) neuropeptide and deltaFosB (ΔFosB) protein expression possibly underlying the development of the binge-eating phenotype in the rat model used. METHOD: Binge-like eating of highly palatable food (HPF) in rats was induced through priming by intermittent, repeated periods of dieting and access to HPF, followed by an additional challenge with acute stress. Effects of nivasorexant were compared to the SO1RAs ACT-335827 and IDOR-1104-2408. OXA expression in neurons and neuronal fibers as well as ΔFosB and OXA-ΔFosB co-expression was studied in relevant brain regions using immuno- or immunofluorescent histochemistry. RESULTS: All SO1RAs dose-dependently reduced binge-like eating with effect sizes comparable to the positive control topiramate, at unbound drug concentrations selectively blocking brain OX1Rs. Nivasorexant's efficacy was maintained upon chronic dosing and under conditions involving more frequent stress exposure. Priming for binge-like eating or nivasorexant treatment resulted in only minor changes in OXA or ΔFosB expression in few brain areas. DISCUSSION: Selective OX1R blockade reduced binge-like eating in rats. Neither ΔFosB nor OXA expression proved to be a useful classifier for their binge-eating phenotype. The current results formed the basis for a clinical phase II trial in BED, in which nivasorexant was unfortunately not efficacious compared with placebo. PUBLIC SIGNIFICANCE: Nivasorexant is a new investigational drug for the treatment of binge-eating disorder (BED). It underwent clinical testing in a phase II proof of concept trial in humans but was not efficacious compared with placebo. The current manuscript investigated the drug's efficacy in reducing binge-like eating behavior of a highly palatable sweet and fat diet in a rat model of BED, which initially laid the foundation for the clinical trial.

5.
Pharmacol Res ; 195: 106875, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517560

RESUMO

Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.


Assuntos
Bulimia , Neuropeptídeos , Hormônios Peptídicos , Animais , Comportamento Alimentar , Neuropeptídeos/uso terapêutico , Obesidade/tratamento farmacológico , Bulimia/tratamento farmacológico
6.
Med Res Rev ; 43(5): 1607-1667, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37036052

RESUMO

Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.


Assuntos
Neuropeptídeos , Humanos , Animais , Receptores de Orexina/metabolismo , Ligantes , Orexinas , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Receptores Acoplados a Proteínas G , Sistema Nervoso Central , Receptores de Neuropeptídeos/metabolismo , Mamíferos/metabolismo
7.
Int J Eat Disord ; 56(6): 1098-1113, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36840536

RESUMO

OBJECTIVE: Consumption of energy-dense palatable "comfort" food can alleviate stress and negative emotions, while abrupt withdrawal from a palatable diet can worsen these symptoms, causing difficulties with adherence to weight-loss diets. Currently, no pharmacological treatment is effective for obesity-related anxiety, so we investigated the endocannabinoid system (ECS), and specifically the fatty acid amide hydrolase (FAAH), as an interesting emerging target in this context because of its key role in the regulation of both energy homeostasis and emotional behavior. METHODS: Rats were subjected to exposure and subsequent abstinence from a palatable cafeteria diet. During abstinence period, rats were treated with the selective FAAH inhibitor PF-3845 (10 mg/kg; intraperitoneal administration every other day). RESULTS: Abstinent rats displayed an anxiogenic-like behavior and changes in the proteins of ECS signaling machinery in brain areas involved both in anxiety and food intake regulation. In particular, withdrawal caused a reduction of the expression of cannabinoid receptors in the nucleus accumbens and of enzymes diacylglycerol lipase alpha and monoacylglycerol lipase (MAGL) in the amygdala. Pharmacological inhibition of FAAH exerted an anxiolytic-like effect in abstinent animals and increased both MAGL expression in amygdala and CB2 expression in prefrontal cortex. DISCUSSION: Overall, our results suggest that emotional disturbances associated with dieting are coupled with region-specific alterations in the cerebral expression of the ECS and that the enhancement of the endocannabinoid signaling by FAAH inhibition might represent a novel pharmacological strategy for the treatment of anxiety related to abstinence from palatable food. PUBLIC SIGNIFICANCE: The present study focused on evaluating the role of the endocannabinoid system in modulating withdrawal from naturally rewarding activities that have an impact on mood, such as feeding. The variations observed in the emotional behavior of abstinent rats was linked to neuroadaptations of the ECS in specific brain areas.


Assuntos
Amidoidrolases , Endocanabinoides , Ratos , Humanos , Animais , Amidoidrolases/metabolismo , Ansiedade/tratamento farmacológico
8.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499556

RESUMO

Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.


Assuntos
Transtorno da Compulsão Alimentar , Ratos , Feminino , Animais , Transtorno da Compulsão Alimentar/genética , Epigênese Genética , Endocanabinoides/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Receptores de Canabinoides/metabolismo , Hipotálamo/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Ingestão de Alimentos
9.
Pharmacol Res ; 185: 106521, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272641

RESUMO

The melanocortinergic neural circuit, known for its influence on energy expenditure and feeding behavior, also plays a role in stress and stress-induced psychiatric disorders, including anxiety and depression. The major contribution is given by the melanocortin-4 receptor (MC4R) subtype, highly expressed in brain regions involved in the control of stress responses. Furthermore, the MC4R appears to profoundly affect the activity of the hypothalamic-pituitary-adrenal (HPA) axis, and it has been also highlighted a functional and anatomical interaction with the corticotropin-releasing factor (CRF), an important mediator of stress and stress-related behaviors. The MC4R agonists seem to exacerbate stress-inducing anxiety- and depressive-like behavior, while MC4R antagonists have been demonstrated to mitigate such disorders, as shown in several preclinical behavioral tests. The evidence collected in the present review suggests that the melanocortin system, through the MC4R, could possibly modulate behavioral responses to stress, suggesting the use of MC4R antagonists as a possible novel treatment for anxiety and depression induced by stress.


Assuntos
Melanocortinas , Sistema Hipófise-Suprarrenal , Humanos , Ansiedade/tratamento farmacológico , Sistema Hipotálamo-Hipofisário , Estresse Fisiológico
10.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681831

RESUMO

Changes in functionality and composition of gut microbiota (GM) have been associated and may contribute to the development and maintenance of obesity and related diseases. The aim of our study was to investigate for the first time the impact of Lactiplantibacillus (L.) plantarum IMC 510 in a rat model of diet-induced obesity, specifically in the cafeteria (CAF) diet. This diet provides a strong motivation to voluntary overeat, due to the palatability and variety of selected energy-dense foods. The oral administration for 84 days of this probiotic strain, added to the CAF diet, decreased food intake and body weight gain. Accordingly, it ameliorated body mass index, liver and white adipose tissue weight, hepatic lipid accumulation, adipocyte size, serum parameters, including glycemia and low-density lipoprotein levels, in CAF fed rats, potentially through leptin control. In this scenario, L. plantarum IMC 510 showed also beneficial effects on GM, limiting the microbial imbalance established by long exposure to CAF diet and preserving the proportion of different bacterial taxa. Further research is necessary to better elucidate the relationship between GM and overweight and then the mechanism of action by which L. plantarum IMC 510 modifies weight. However, these promising results prompt a clear advantage of probiotic supplementation and identify a new potential probiotic as a novel and safe therapeutic approach in obesity prevention and management.


Assuntos
Biodiversidade , Suplementos Nutricionais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/microbiologia , Probióticos/administração & dosagem , Aumento de Peso/efeitos dos fármacos , Adipócitos/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Ração Animal/microbiologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , DNA Bacteriano , Dieta Hiperlipídica , Modelos Animais de Doenças , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Leptina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Obesidade/induzido quimicamente , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley
11.
Pharmacol Res ; 172: 105847, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34438062

RESUMO

The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.


Assuntos
Aciltransferases/fisiologia , Comportamento Alimentar , Grelina/fisiologia , Animais , Bulimia , Ingestão de Alimentos , Humanos , Motivação , Recompensa
12.
Pharmaceuticals (Basel) ; 14(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810221

RESUMO

The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.

13.
Eur J Med Chem ; 212: 113141, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422983

RESUMO

Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or ß-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.


Assuntos
Antagonistas de Dopamina/farmacologia , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Receptores de Dopamina D4/antagonistas & inibidores , Transtornos Relacionados ao Uso de Álcool/tratamento farmacológico , Animais , Disfunção Cognitiva/tratamento farmacológico , Antagonistas de Dopamina/síntese química , Antagonistas de Dopamina/química , Humanos , Ligantes , Doença de Parkinson/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
14.
Int J Mol Sci ; 22(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401515

RESUMO

Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.


Assuntos
Comportamento Alimentar , Regulação da Expressão Gênica , Receptor CB1 de Canabinoide/genética , Animais , Humanos , Camundongos , Regiões Promotoras Genéticas , Ratos , Transcrição Gênica
15.
Nutrients ; 12(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202557

RESUMO

The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.


Assuntos
Bulimia/genética , Ingestão de Alimentos/genética , Comportamento Alimentar , Hiperfagia/genética , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Índice de Massa Corporal , Ingestão de Alimentos/psicologia , Humanos , Hipotálamo/metabolismo , Motivação , Mutação , Obesidade/psicologia , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Recompensa
16.
ACS Chem Neurosci ; 11(19): 3107-3116, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32886484

RESUMO

In this paper, the benzo-cracking approach was applied to the potent sigma1 (σ1) receptor antagonist 1 to afford the less conformationally constrained 1,3-dioxane derivatives 2 and 3. To evaluate the effect of the increase in the distance between the two hydrophobic structural elements that flank the basic function, the cis and trans diastereomers of 4 and 5 were also prepared and studied. Compounds 2 and 3 showed affinity values at the σ1 receptor significantly higher than that of the lead compound 1. In particular, 3 displayed unprecedented selectivity over the σ2 receptor, the phencyclidine site of the NMDA receptor, and opioid receptor subtypes, as well as over the dopamine transporter. Docking results supported the structure-activity relationship studies. Due to its interesting biological profile, derivative 3, selected for an in vivo study in a validated preclinical model of binge eating, was able to counteract the overeating of palatable food only in binging rats, without affecting palatable food intake in the control group and anxiety-like and depression-related behaviors in female rats. This result strengthened the involvement of the σ1 receptor in the compulsive-like eating behavior and supported the σ1 receptor as a promising target for the management of eating disorders.


Assuntos
Transtorno da Compulsão Alimentar , Bulimia , Receptores sigma , Animais , Comportamento Alimentar , Feminino , Ratos , Receptores de N-Metil-D-Aspartato , Receptores sigma/metabolismo , Relação Estrutura-Atividade
17.
Nutrients ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751662

RESUMO

The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos/genética , Predisposição Genética para Doença/genética , Polimorfismo Genético/fisiologia , Receptores de Dopamina D4/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Alelos , Animais , Encéfalo/metabolismo , Dopamina/metabolismo , Éxons , Humanos , Repetições Minissatélites/genética
18.
Neuropsychopharmacology ; 45(11): 1931-1941, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32353860

RESUMO

Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell ("frustration stress"). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg-1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.


Assuntos
Transtorno da Compulsão Alimentar , Animais , Transtorno da Compulsão Alimentar/tratamento farmacológico , Ingestão de Alimentos , Endocanabinoides , Feminino , Frustração , Ácidos Oleicos , Ratos
19.
FASEB J ; 34(7): 9358-9371, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463138

RESUMO

Numerous nutritional approaches aimed at reducing body weight have been developed as a strategy to reduce obesity. Most of these interventions rely on reducing caloric intake or limiting calories access to a few hours per day. In this work, we analyzed the effects of the extended (24 hours/day) or restricted (1 hour/day) access to a cafeteria-style (CAF) diet, on rat body weight and hepatic lipid metabolism, with respect to control rats (CTR) fed with a standard chow diet. The body weight gain of restricted-fed rats was not different from CTR, despite the slightly higher total caloric intake, but resulted significantly lower than extended-fed rats, which showed a CAF diet-induced obesity and a dramatically higher total caloric intake. However, both CAF-fed groups of rats showed, compared to CTR, unhealthy serum and hepatic parameters such as higher serum glucose level, lower HDL values, and increased hepatic triacylglycerol and cholesterol amount. The hepatic expression and activity of key enzymes of fatty acid synthesis, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS), was similarly reduced in both CAF-fed groups of rats with respect to CTR. Anyway, while in extended-fed rats this reduction was associated to a long-term mechanism involving sterol regulatory element-binding protein-1 (SREBP-1), in restricted-fed animals a short-term mechanism based on PKA and AMPK activation occurred in the liver. Furthermore, hepatic fatty acid oxidation (FAO) and oxidative stress resulted significantly increased in extended, but not in restricted-fed rats, as compared to CTR. Overall, these results demonstrate that although limiting the total caloric intake might successfully fight obesity development, the nutritional content of the diet is the major determinant for the health status.


Assuntos
Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Lipogênese , Fígado/metabolismo , Fígado/patologia , Aumento de Peso , Animais , Ingestão de Energia , Lipídeos/sangue , Masculino , Ratos , Ratos Wistar
20.
Front Pharmacol ; 11: 266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231568

RESUMO

There is a strong relationship between palatable diet and pain sensitivity, and the cannabinoid and opioid systems might play an important role in this correlation. The palatable diet used in many animal models of obesity is the cafeteria (CAF) diet, based on human food with high sugar, salt, and fat content. In this study, we investigated whether long-term exposure to a CAF diet could modify pain sensitivity and explored the role of the cannabinergic system in this modification. Male Sprague-Dawley rats were divided into two groups: one fed with standard chow only (CO) and the other with extended access (EA) to a CAF diet. Hot plate and tail flick tests were used to evaluate pain sensitivity. At the end of a 40-day CAF exposure, EA rats showed a significant increase in the pain threshold compared to CO rats, finding probably due to up-regulation of CB1 and mu-opioid receptors. Instead, during abstinence from palatable foods, EA animals showed a significant increase in pain sensibility, which was ameliorated by repeated treatment with a fatty acid amide hydrolase inhibitor, PF-3845 (10 mg/kg, intraperitoneally), every other day for 28 days. Ex vivo analysis of the brains of these rats clearly showed that this effect was mediated by mu-opioid receptors, which were up-regulated following repeated treatment of PF-3845. Our data add to the knowledge about changes in pain perception in obese subjects, revealing a key role of CB1 and mu-opioid receptors and their possible pharmacological crosstalk and reinforcing the need to consider this modulation in planning effective pain management for obese patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...