Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; : PHYTO06230206R, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669176

RESUMO

Little is known about the selection pressures acting on plant pathogen populations, especially those applied by quantitative forms of resistance. Fusarium graminearum causes Fusarium head blight in wheat, producing significant yield losses and mycotoxin contamination. Quantitative host resistance is the best method to control Fusarium head blight. However, there needs to be more understanding of how disease resistance affects the evolution of plant pathogens. The aim of this study was to determine if the presence or absence of wheat resistance influenced the fitness components and genomic regions of F. graminearum. Thirty-one isolates from highly susceptible and 25 isolates from moderately resistant wheat lines were used. Isolate aggressiveness was measured by the area under the disease progress curve, visually damaged kernels, and deoxynivalenol contamination. The in vitro growth rate and spore production were also measured. Two whole-genome scans for selection were conducted with 333,297 single-nucleotide polymorphisms. One scan looked for signatures of selection in the entire sample, and the other scan was for divergent selection between the isolates from moderately resistant wheat and highly susceptible wheat. The subsample of isolates from highly susceptible wheat was primarily aggressive. Several regions of the F. graminearum genome with signatures for selection were identified. The moderately resistant wheat varieties used in this study did not select more aggressive isolates, suggesting that quantitative resistance is a durable method to control Fusarium head blight.

2.
Nat Commun ; 14(1): 6043, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758723

RESUMO

Plant disease resistance genes are widely used in agriculture to reduce disease outbreaks and epidemics and ensure global food security. In soybean, Rps (Resistance to Phytophthora sojae) genes are used to manage Phytophthora sojae, a major oomycete pathogen that causes Phytophthora stem and root rot (PRR) worldwide. This study aims to identify temporal changes in P. sojae pathotype complexity, diversity, and Rps gene efficacy. Pathotype data was collected from 5121 isolates of P. sojae, derived from 29 surveys conducted between 1990 and 2019 across the United States, Argentina, Canada, and China. This systematic review shows a loss of efficacy of specific Rps genes utilized for disease management and a significant increase in the pathotype diversity of isolates over time. This study finds that the most widely deployed Rps genes used to manage PRR globally, Rps1a, Rps1c and Rps1k, are no longer effective for PRR management in the United States, Argentina, and Canada. This systematic review emphasizes the need to widely introduce new sources of resistance to P. sojae, such as Rps3a, Rps6, or Rps11, into commercial cultivars to effectively manage PRR going forward.


Assuntos
Phytophthora , Phytophthora/genética , Genes de Plantas , Agricultura , Argentina , Canadá/epidemiologia
3.
Plant Dis ; 107(6): 1785-1793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36415892

RESUMO

Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, is one of the most devastating oomycete diseases of soybean in Illinois. Single resistant genes (Rps) are used to manage this pathogen but P. sojae has adapted to Rps, causing failure of resistance in many regions. In addition to P. sojae, recent reports indicate that P. sansomeana could also cause root rot in soybean. Soil samples and symptomatic plants were collected across 40 Illinois counties between 2016 and 2018. P. sojae (77%) was more abundant than P. sansomeana (23%) across Illinois fields. Both species were characterized by virulence, aggressiveness, and fungicide sensitivity. Virulence of all P. sojae isolates was evaluated using the hypocotyl inoculation technique in 13 soybean differentials. Aggressiveness was evaluated in the greenhouse by inoculating a susceptible cultivar and measuring root and shoot dry weight. On average, P. sojae isolates were able to cause disease on six soybean differentials. P. sojae was more aggressive than P. sansomeana. All isolates were sensitive to azoxystrobin, ethaboxam, mefenoxam, and metalaxyl. The characterization of the population of species associated with PRR will inform management decisions for this disease in Illinois.


Assuntos
Fungicidas Industriais , Phytophthora , Resistência à Doença/genética , Glycine max/genética , Fungicidas Industriais/farmacologia , Phytophthora/genética , Virulência , Illinois
4.
Plant Genome ; 15(3): e20243, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35822435

RESUMO

Anthracnose leaf blight (ALB) is an economically important disease of sorghum [Sorghum bicolor (L.) Moench] caused by the fungal pathogen Colletotrichum sublineola Henn. ex Sacc. & Trotter. Although qualitative and quantitative resistance have been identified for ALB, the usefulness of resistance loci differs depending on the pathogen pathotype. Identifying resistance effective against unique pathogen pathotypes is critical to managing ALB, as the disease is managed primarily through the deployment of host resistance. We isolated C. sublineola from ALB-infected leaves collected in Illinois and found that the strain was a novel pathotype, as it produced a unique combination of virulence against a set of differential lines. Using this isolate, we inoculated 579 temperate-adapted sorghum conversion lines in 2019 and 2020. We then conducted a genome-wide association study (GWAS) and a metabolic pathway analysis using the Pathway Associated Study Tool (PAST). We identified 47 significant markers distributed across all chromosomes except chromosome 8. We identified 32 candidate genes based on physical proximity with significant markers, some of which have a known role in host defense. We identified 47 pathways associated with ALB resistance, indicating a role for secondary metabolism in defense to ALB. Our results are important to improve the understanding of the genetic basis of ALB resistance in sorghum and highlight the importance of developing durable resistance to ALB.


Assuntos
Colletotrichum , Sorghum , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sorghum/genética , Sorghum/microbiologia
5.
Fungal Genet Biol ; 159: 103655, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954385

RESUMO

Northern corn leaf blight (NCLB) and sorghum leaf blight (SLB) are significant diseases of maize and sorghum, respectively, caused by the filamentous fungus Setosphaeria turcica. Strains of S. turcica are typically host-specific and infect either maize or sorghum. Host specificity in this pathogen is attributed to a single locus for maize and a second distinct locus for sorghum. To identify the genetic basis of host specificity in S. turcica, we generated a biparental population of S. turcica by crossing strains specific to maize and sorghum, phenotyped the population for leaf blight on sorghum and maize, genotyped the population to create a linkage map of S. turcica, and located candidate virulence regions. A total of 190 ascospores from 35 pseudothecia were isolated from the cross of maize and sorghum-specific strains. Greenhouse phenotyping of the biparental population (n = 144) showed independent inheritance of virulence, as indicated by a 1:1:1:1 segregation for virulence to maize, sorghum, both maize and sorghum, and avirulence to both crops. The population and host-specific parent strains were genotyped using genome skim sequencing on an Illumina NovaSeq 6000 platform resulting in over 780 million reads. A total of 32,635 variants including single nucleotide polymorphisms and indels were scored. There was evidence for a large deletion in the sorghum-specific strain of S. turcica. A genetic map consisting of 17 linkage groups spanning 3,069 centimorgans was constructed. Virulence to sorghum and maize mapped on distinct linkage groups with a significant QTL detected for virulence to maize. Furthermore, a single locus each for the in vitro traits hyphal growth rate and conidiation were identified and mapped onto two other linkage groups. In vitro traits did not correlate with in planta virulence complexity, suggesting that virulence on both hosts does not incur a fitness cost. Hyphal growth rate and conidiation were negatively correlated, indicating differences in hyphal growth versus dispersal ability for this pathogen. Identification of genetic regions underlying virulence specificity and saprotrophic growth traits in S. turcica provides a better understanding of the S. turcica- Andropogoneae pathosystem.


Assuntos
Doenças das Plantas , Zea mays , Ascomicetos , Mapeamento Cromossômico , Genômica , Doenças das Plantas/microbiologia , Virulência/genética , Zea mays/microbiologia
6.
Front Plant Sci ; 12: 675208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113371

RESUMO

Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. Exserohilum turcicum infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific E. turcicum isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. E. turcicum responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.

7.
G3 (Bethesda) ; 10(8): 2819-2828, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32571803

RESUMO

Crops are hosts to numerous plant pathogenic microorganisms. Maize has several major disease issues; thus, breeding multiple disease resistant (MDR) varieties is critical. While the genetic basis of resistance to multiple fungal pathogens has been studied in maize, less is known about the relationship between fungal and bacterial resistance. In this study, we evaluated a disease resistance introgression line (DRIL) population for the foliar disease Goss's bacterial wilt and blight (GW) and conducted quantitative trait locus (QTL) mapping. We identified a total of ten QTL across multiple environments. We then combined our GW data with data on four additional foliar diseases (northern corn leaf blight, southern corn leaf blight, gray leaf spot, and bacterial leaf streak) and conducted multivariate analysis to identify regions conferring resistance to multiple diseases. We identified 20 chromosomal bins with putative multiple disease effects. We examined the five chromosomal regions (bins 1.05, 3.04, 4.06, 8.03, and 9.02) with the strongest statistical support. By examining how each haplotype effected each disease, we identified several regions associated with increased resistance to multiple diseases and three regions associated with opposite effects for bacterial and fungal diseases. In summary, we identified several promising candidate regions for multiple disease resistance in maize and specific DRILs to expedite interrogation.


Assuntos
Micoses , Zea mays , Ascomicetos , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas , Zea mays/genética
8.
BMC Plant Biol ; 20(1): 67, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041528

RESUMO

BACKGROUND: Exserohilum turcicum is an important pathogen of both sorghum and maize, causing sorghum leaf blight and northern corn leaf blight. Because the same pathogen can infect and cause major losses for two of the most important grain crops, it is an ideal pathosystem to study plant-pathogen evolution and investigate shared resistance mechanisms between the two plant species. To identify sorghum genes involved in the E. turcicum response, we conducted a genome-wide association study (GWAS). RESULTS: Using the sorghum conversion panel evaluated across three environments, we identified a total of 216 significant markers. Based on physical linkage with the significant markers, we detected a total of 113 unique candidate genes, some with known roles in plant defense. Also, we compared maize genes known to play a role in resistance to E. turcicum with the association mapping results and found evidence of genes conferring resistance in both crops, providing evidence of shared resistance between maize and sorghum. CONCLUSIONS: Using a genetics approach, we identified shared genetic regions conferring resistance to E. turcicum in both maize and sorghum. We identified several promising candidate genes for resistance to leaf blight in sorghum, including genes related to R-gene mediated resistance. We present significant advancements in the understanding of host resistance to E. turcicum, which is crucial to reduce losses due to this important pathogen.


Assuntos
Ascomicetos/fisiologia , Genes de Plantas , Ligação Genética , Doenças das Plantas/genética , Sorghum/genética , Zea mays/genética , Meio Ambiente , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia
9.
Mycologia ; 111(4): 563-573, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31112486

RESUMO

Fusarium head blight (FHB), caused by Fusarium graminearum and other Fusarium species, is a detrimental disease that affects small grains such as wheat around the world. Management of FHB is difficult, and surveillance as well as a better understanding of pathogen aggressiveness is needed for improved control. F. graminearum disease severity varies depending on the resistance of the host genotype. In this study, we used the field pathogenomics method to investigate gene expression and population structure of isolates collected from wheat lines of varying resistance levels (susceptible, intermediate, and resistant) as well as an axenic control. Differential gene expression was found among isolates collected from different host genotypes. Candidate gene sets were identified for both F. graminearum infection of specific host genotypes and general infection to wheat. Population structure of isolates from different resistance level sources was the same, with all isolates belonging to the NA1 population.


Assuntos
Resistência à Doença/genética , Fusarium/genética , Perfilação da Expressão Gênica , Doenças das Plantas/microbiologia , Triticum , Fusariose/microbiologia , Fusarium/patogenicidade , Genes Fúngicos , Genótipo , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Triticum/microbiologia
10.
Phytopathology ; 108(2): 254-263, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28952420

RESUMO

Generating effective and stable strategies for resistance breeding requires an understanding of the genetics of host-pathogen interactions and the implications for pathogen dynamics and evolution. Setosphaeria turcica causes northern leaf blight (NLB), an important disease of maize for which major resistance genes have been deployed. Little is known about the evolutionary dynamics of avirulence (AVR) genes in S. turcica. To test the hypothesis that there is a genetic association between avirulence and in vitro development traits, we (i) created a genetic map of S. turcica, (ii) located candidate AVRHt1 and AVRHt2 regions, and (iii) identified genetic regions associated with several in vitro development traits. A cross was generated between a race 1 and a race 23N strain, and 221 progeny were isolated. Genotyping by sequencing was used to score 2,078 single-nucleotide polymorphism markers. A genetic map spanning 1,981 centimorgans was constructed, consisting of 21 linkage groups. Genetic mapping extended prior evidence for the location and identity of the AVRHt1 gene and identified a region of interest for AVRHt2. The genetic location of AVRHt2 colocalized with loci influencing radial growth and mycelial abundance. Our data suggest a trade-off between virulence on Ht1 and Ht2 and the pathogen's vegetative growth rate. In addition, in-depth analysis of the genotypic data suggests the presence of significant duplication in the genome of S. turcica.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Zea mays/microbiologia , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Ligação Genética , Genótipo , Interações Hospedeiro-Patógeno , Fenótipo , Virulência
11.
Phytopathology ; 102(8): 787-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22779745

RESUMO

Aspergillus flavus and other Aspergillus spp. infect maize and produce aflatoxins. An important control measure is the use of resistant maize hybrids. There are several reports of maize lines that are resistant to aflatoxin accumulation but the mechanisms of resistance remain unknown. To gain a better understanding of resistance, we dissected the phenotype into 10 components: 4 pertaining to the response of silk, 4 pertaining to the response of developing kernels, and 2 pertaining to the response of mature kernels to inoculation with A. flavus. In order to challenge different tissues and to evaluate multiple components of resistance, various inoculation methods were used in experiments in vitro and under field conditions on a panel of diverse maize inbred lines over 3 years. As is typical for this trait, significant genotype-environment interactions were found for all the components of resistance studied. There was, however, significant variation in maize germplasm for susceptibility to silk and kernel colonization by A. flavus as measured in field assays. Resistance to silk colonization has not previously been reported. A significant correlation of resistance to aflatoxin accumulation with flowering time and kernel composition traits (fiber, ash, carbohydrate, and seed weight) was detected. In addition, correlation analyses with data available in the literature indicated that lines that flower later in the season tend to be more resistant. We were not able to demonstrate that components identified in vitro were associated with reduced aflatoxin accumulation in the field.


Assuntos
Aspergillus/patogenicidade , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Aflatoxinas/metabolismo
12.
BMC Genomics ; 10: 49, 2009 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-19171053

RESUMO

BACKGROUND: High throughput methods, such as high density oligonucleotide microarray measurements of mRNA levels, are popular and critical to genome scale analysis and systems biology. However understanding the results of these analyses and in particular understanding the very wide range of levels of transcriptional changes observed is still a significant challenge. Many researchers still use an arbitrary cut off such as two-fold in order to identify changes that may be biologically significant. We have used a very large-scale microarray experiment involving 72 biological replicates to analyze the response of soybean plants to infection by the pathogen Phytophthora sojae and to analyze transcriptional modulation as a result of genotypic variation. RESULTS: With the unprecedented level of statistical sensitivity provided by the high degree of replication, we show unambiguously that almost the entire plant genome (97 to 99% of all detectable genes) undergoes transcriptional modulation in response to infection and genetic variation. The majority of the transcriptional differences are less than two-fold in magnitude. We show that low amplitude modulation of gene expression (less than two-fold changes) is highly statistically significant and consistent across biological replicates, even for modulations of less than 20%. Our results are consistent through two different normalization methods and two different statistical analysis procedures. CONCLUSION: Our findings demonstrate that the entire plant genome undergoes transcriptional modulation in response to infection and genetic variation. The pervasive low-magnitude remodeling of the transcriptome may be an integral component of physiological adaptation in soybean, and in all eukaryotes.


Assuntos
Perfilação da Expressão Gênica , Genoma de Planta , Glycine max/genética , Phytophthora/patogenicidade , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Interações Hospedeiro-Patógeno , Modelos Lineares , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças das Plantas/genética , RNA de Plantas/genética , Sensibilidade e Especificidade , Glycine max/metabolismo , Glycine max/microbiologia
13.
Plant Dis ; 93(11): 1163-1170, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30754581

RESUMO

Aspergillus flavus causes ear rot of maize and produces aflatoxins that can contaminate grain even in the absence of visible symptoms of infection. Resistance to aflatoxin accumulation and pathogen colonization are considered distinct traits in maize. Colonization of grain by fungi such as A. flavus has been difficult to quantify. We developed and validated two quantitative real-time polymerase chain reaction (qPCR) assays to estimate fungal biomass in maize tissues. In order to study the relationship between fungal biomass and aflatoxin accumulation, qPCR was conducted and aflatoxin concentrations were assayed in milled samples of mature maize kernels for two diverse sets of maize germplasm. The first was a set of hybrids that was inoculated with A. flavus in a conducive field environment in Mississippi. These hybrids, mainly early tropical and non-stiff-stalk genotypes adapted to local conditions, carry known sources of resistance among their progenitors. The second set, also tested in Mississippi, was a group of inbred lines representing a wider sample of maize genetic diversity. For both sets, our results showed a high correlation between fungal load and aflatoxin concentration in maize kernels. Our qPCR methodology could have a direct impact on breeding programs that aim to identify lines with resistance to aflatoxin accumulation, and set the stage for future studies on the genetic dissection of aflatoxin-related traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...