Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 42(4): 342-349, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32744343

RESUMO

Currently, feature annotation remains one of the main challenges in untargeted metabolomics. In this context, the information provided by high-resolution mass spectrometry (HRMS) in addition to accurate mass can improve the quality of metabolite annotation, and MS/MS fragmentation patterns are widely used. Accurate mass and a separation index, such as retention time or effective mobility (µeff ), in chromatographic and electrophoretic approaches, respectively, must be used for unequivocal metabolite identification. The possibility of measuring collision cross-section (CCS) values by using ion mobility (IM) is becoming increasingly popular in metabolomic studies thanks to the new generation of IM mass spectrometers. Based on their similar separation mechanisms involving electric field and the size of the compounds, the complementarity of DT CCSN2 and µeff needs to be evaluated. In this study, a comparison of DT CCSN2 and µeff was achieved in the context of feature identification ability in untargeted metabolomics by capillary zone electrophoresis (CZE) coupled with HRMS. This study confirms the high correlation of DT CCSN2 with the mass of the studied metabolites as well as the orthogonality between accurate mass and µeff , making this combination particularly interesting for the identification of several endogenous metabolites. The use of IM-MS remains of great interest for facilitating the annotation of neutral metabolites present in the electroosmotic flow (EOF) that are poorly or not separated by CZE.


Assuntos
Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Biomarcadores/metabolismo , Curadoria de Dados , Bases de Dados Factuais , Eletro-Osmose , Humanos , Padrões de Referência
2.
Sci Rep ; 6: 34366, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694986

RESUMO

Organisms developed different photoreceptors to be able to adapt to changing environmental light conditions. Phytochromes are red/far-red (r/fr) photochromic photoreceptors that belong to the classical photoreceptors along with cryptochromes and phototropins. They convert absorbed light into a biological signal by switching between two states in a light-dependent manner therefore enabling the light control downstream signalling. Their Pfr conformation is the biological active form in plants, but until now only a structure of the ground state (Pr) was solved. Here, the authors provide information about structural changes occurring during photoconversion within phytochrome B and identify possible interaction sites for its N-terminal extension (NTE) utilising hydrogen/deuterium exchange rate analyses of its amide backbone. Especially, the newly identified light-dependency of two regions in the NTE are of particular interest for understanding the involvement of the phytochrome's NTE in the regulation of its downstream signalling.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Luz , Fitocromo B/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Medição da Troca de Deutério , Fitocromo B/metabolismo , Domínios Proteicos
3.
Sci Rep ; 6: 35604, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752134

RESUMO

Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) with a unique lariat knot-like fold that endows them with extraordinary stability and biologically relevant activity. However, the biosynthetic mechanism of these fascinating molecules remains largely speculative. Generally, two enzymes (B for processing and C for cyclization) are required to assemble the unusual knot-like structure. Several subsets of lasso peptide gene clusters feature a "split" B protein on separate open reading frames (B1 and B2), suggesting distinct functions for the B protein in lasso peptide biosynthesis. Herein, we provide new insights into the role of the RiPP recognition element (RRE) PadeB1, characterizing its capacity to bind the paeninodin leader peptide and deliver its peptide substrate to PadeB2 for processing.


Assuntos
Proteínas de Bactérias/metabolismo , Paenibacillus/fisiologia , Peptídeos/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/metabolismo , Regulação Bacteriana da Expressão Gênica , Família Multigênica/genética , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta/genética , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas/genética , Estabilidade Proteica
4.
PLoS One ; 11(7): e0158749, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382962

RESUMO

The biosynthesis of iron sulfur (Fe-S) clusters in Bacillus subtilis is mediated by a SUF-type gene cluster, consisting of the cysteine desulfurase SufS, the scaffold protein SufU, and the putative chaperone complex SufB/SufC/SufD. Here, we present the high-resolution crystal structure of the SufS homodimer in its product-bound state (i.e., in complex with pyrodoxal-5'-phosphate, alanine, Cys361-persulfide). By performing hydrogen/deuterium exchange (H/DX) experiments, we characterized the interaction of SufS with SufU and demonstrate that SufU induces an opening of the active site pocket of SufS. Recent data indicate that frataxin could be involved in Fe-S cluster biosynthesis by facilitating iron incorporation. H/DX experiments show that frataxin indeed interacts with the SufS/SufU complex at the active site. Our findings deepen the current understanding of Fe-S cluster biosynthesis, a complex yet essential process, in the model organism B. subtilis.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Liases de Carbono-Enxofre/química , Proteínas de Ligação ao Ferro/química , Proteínas Ferro-Enxofre/química , Alanina/química , Alanina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Medição da Troca de Deutério/métodos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Família Multigênica , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Frataxina
5.
FEBS Lett ; 589(15): 1802-6, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26026269

RESUMO

Thurincin H is a 31-residue, ribosomally synthesized bacteriocin originating from the thn operon of Bacillus thuringiensis SF361. It is the only known sactipeptide carrying four thioether bridges between four cysteines and the α-carbons of a serine, an asparagine and two threonine residues. By analysis of the thn operon and use of in vitro studies we now reveal that ThnB is a radical S-adenosylmethionine (SAM) enzyme containing two [4Fe-4S] clusters. Furthermore, we confirm the involvement of ThnB in the formation of the thioether bonds present within the structure of thurincin H. Finally, we show that the PqqD homologous N-terminal domain of ThnB is essential for maturation of the thurincin H precursor peptide, but not for the SAM cleavage activity of ThnB.


Assuntos
Bacteriocinas/metabolismo , Hidrolases/metabolismo , Sulfetos/metabolismo , Sequência de Aminoácidos , Bacillus thuringiensis/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Dados de Sequência Molecular , Óperon , Sulfetos/química
6.
PLoS One ; 10(3): e0122538, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826316

RESUMO

Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme maturation in Bacillus subtilis and present, for the first time, structural evidence for the physical interaction of a frataxin homologue (Fra), which is suggested to act as a regulatory component as well as an iron chaperone in different cellular pathways, and a ferrochelatase (HemH), which catalyses the final step of heme b biogenesis. Specific interaction between Fra and HemH was observed upon co-purification from crude cell lysates and, further, by using the recombinant proteins for analytical size-exclusion chromatography. Hydrogen-deuterium exchange experiments identified the landscape of the Fra/HemH interaction interface and revealed Fra as a specific ferrous iron donor for the ferrochelatase HemH. The functional utilisation of the in vitro-generated heme b co-factor upon Fra-mediated iron transfer was confirmed by using the B. subtilis nitric oxide synthase bsNos as a metabolic target enzyme. Complementary mutational analyses confirmed that Fra acts as an essential component for maturation and subsequent targeting of the heme b co-factor, hence representing a key player in the iron-dependent physiology of B. subtilis.


Assuntos
Bacillus subtilis/metabolismo , Heme/biossíntese , Proteínas de Ligação ao Ferro/fisiologia , Ferro/metabolismo , Frataxina
7.
Biochemistry ; 51(14): 3059-66, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22439765

RESUMO

Rhodochelin, a mixed catecholate-hydroxamate type siderophore isolated from Rhodococcus jostii RHA1, holds two L-δ-N-formyl-δ-N-hydroxyornithine (L-fhOrn) moieties essential for proper iron coordination. Previously, bioinformatic and genetic analysis proposed rmo and rft as the genes required for the tailoring of the L-ornithine (L-Orn) precursor [Bosello, M. (2011) J. Am. Chem. Soc.133, 4587-4595]. In order to investigate if both Rmo and Rft constitute a pathway for L-fhOrn biosynthesis, the enzymes were heterologously produced and assayed in vitro. In the presence of molecular oxygen, NADPH and FAD, Rmo monooxygenase was able to convert L-Orn into L-δ-N-hydroxyornithine (L-hOrn). As confirmed in a coupled reaction assay, this hydroxylated intermediate serves as a substrate for the subsequent N(10)-formyl-tetrahydrofolate-dependent (N(10)-fH(4)F) Rtf-catalyzed formylation reaction, establishing a route for the L-fhOrn biosynthesis, prior to its incorporation by the NRPS assembly line. It is of particular interest that a major improvement to this study has been reached with the use of an alternative approach to the chemoenzymatic FolD-dependent N(10)-fH(4)F conversion, also rescuing the previously inactive CchA, the Rft-homologue in coelichelin assembly line [Buchenau, B. (2004) Arch. Microbiol.182, 313-325; Pohlmann, V. (2008) Org. Biomol. Chem.6, 1843-1848].


Assuntos
Proteínas de Bactérias/química , Hidroximetil e Formil Transferases/química , Ferro/química , Oxigenases de Função Mista/química , Oligopeptídeos/química , Ornitina/análogos & derivados , Ornitina/química , Proteínas de Bactérias/genética , Sítios de Ligação , Hidroxilação , Hidroximetil e Formil Transferases/genética , Ferro/metabolismo , Oxigenases de Função Mista/genética , Oligopeptídeos/metabolismo , Ornitina/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rhodococcus/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...