Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38599629

RESUMO

Taking into account that in recent decades there has been an increase in the incidence of urinary stones, especially in highly developed countries, from a wide range of potentially harmful substances commonly available in such countries, we chose zinc for the research presented in this article, which is classified by some sources as a heavy metal. In this article, we present the results of research on the influence of Zn2+ ion on the nucleation and growth of struvite crystals-the main component of infection urinary stones. The tests were carried out in an artificial urine environment with and without the presence of Proteus mirabilis bacteria. In the latter case, the activity of bacterial urease was simulated chemically, by systematic addition of an aqueous ammonia solution. The obtained results indicate that Zn2+ ions compete with Mg2+ ions, which leads to the gradual replacement of Mg2+ ions in the struvite crystal lattice with Zn2+ ions to some extent. This means co-precipitation of Mg-struvite (MgNH4PO4·6H2O) and Znx-struvite (Mg1-xZnxNH4PO4·6H2O). Speciation analysis of chemical complexes showed that Znx-struvite precipitates at slightly lower pH values than Mg-struvite. This means that Zn2+ ions shift the nucleation point of crystalline solids towards a lower pH. Additionally, the conducted research shows that Zn2+ ions, in the range of tested concentrations, do not have a toxic effect on bacteria; on the contrary, it has a positive effect on cellular metabolism, enabling bacteria to develop better. It means that Zn2+ ions in artificial urine, in vitro, slightly increase the risk of developing infection urinary stones.


Assuntos
Proteus mirabilis , Estruvita , Cálculos Urinários , Zinco , Estruvita/química , Zinco/metabolismo , Zinco/química , Cálculos Urinários/química , Cálculos Urinários/metabolismo , Cálculos Urinários/microbiologia , Proteus mirabilis/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatos/química , Íons , Compostos de Magnésio/metabolismo , Compostos de Magnésio/química , Cristalização
2.
Sci Rep ; 12(1): 14332, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995826

RESUMO

In recent years, there has been a continuous increase in the incidence of urolithiasis, especially in highly developed countries. Therefore, the question arises which factors specific to these countries may be responsible for the increase in the incidence of this disease. In this article, we try to assess the effect of phosphoric acid, a component of various carbonated drinks, including Coca-Cola, on the nucleation and growth of struvite crystals, which are the main component of infectious urinary stones. The research was carried out in the environment of artificial urine with and without the presence of Proteus mirabilis bacteria. In the latter case, the activity of bacterial urease was simulated by adding an aqueous ammonia solution. The obtained results indicate that phosphoric acid present in artificial urine causes the nucleation of struvite to shift towards a lower pH, which means that struvite nucleates earlier in artificial urine compared to the control test. The amount of struvite formed is the greater the higher the concentration of phosphoric acid. At the same time, as the concentration of phosphoric acid increases, the growing struvite crystals are larger, which is disadvantageous because they are more difficult to remove from the urinary tract along with the urine. For the highest levels of phosphoric acid tested, large dendrites are formed, which are particularly undesirable as they can damage the epithelium of the urinary tract. The effect of phosphoric acid on the nucleation and growth of struvite is explained in base of chemical speciation analysis. This analysis indicates that the MgHCit and MgCit- complexes have the main influence on the nucleation and growth of struvite in artificial urine in the presence of phosphoric acid. It should be keep in mind that all these effects of phosphoric acid are possible when the urinary tract is infected with urease-positive bacteria. In the absence of infection, phosphoric acid will not cause struvite to crystallize.


Assuntos
Compostos de Magnésio , Urolitíase , Bebidas Gaseificadas , Cristalização , Humanos , Fosfatos , Ácidos Fosfóricos , Proteus mirabilis , Estruvita/química , Urease , Urina , Urolitíase/induzido quimicamente , Urolitíase/microbiologia
3.
J Magn Reson ; 246: 46-56, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25064270

RESUMO

Pulse EPR experiments were performed on low concentration Mn(2+) ions in ammonium oxalate monohydrate single crystals at X-band, in the temperature range 4.2-60K at crystal orientation close to the D-tensor z-axis. Hyperfine lines of the resolved spin transitions were selectively excited by short nanosecond pulses. Electron spin echo signal was not observed for the low spin transition (+5/2↔+3/2) suggesting a magnetic field threshold for the echo excitation. Echo appears for higher spin transitions with amplitude, which grows with magnetic field. Opposite behavior displays amplitude of echo decay modulations, which is maximal at low field and negligible for high field spin transitions. Electron spin-lattice relaxation was measured by the pulse saturation method. After the critical analysis of possible relaxation processes it was concluded that the relaxation is governed by Raman T(7)-process. The relaxation is the same for all spin transitions except the lowest temperatures (below 20K) where the high field transitions (-3/2↔-1/2) and (-5/2↔-3/2) have a slower relaxation rate. Electron spin echo dephasing is produced by electron spectral diffusion mainly, with a small contribution from instantaneous diffusion for all spin transitions. For the highest field transition (-5/2↔-3/2) an additional contribution from nuclear spectral diffusion appears with resonance type enhancement at low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...