Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(34): 5037-5044, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37407407

RESUMO

The Coronavirus (COVID-19) Disease Pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide, prompting a collective effort from the global scientific community to develop a vaccine against it. This study purports to investigate the influence of factors such as sex, age, type of vaccination (Comirnaty, BNT162b2, Pfizer Inc. or Vaxzevria, ChAdOx1-S, Oxford/AstraZeneca), and time since vaccine administration on the process of antibody production. Both of them are based on the introduction of SARS-CoV-2 spike protein (S protein) to the body using different mechanisms (mRNA and recombinant adenovirus, respectively). S protein is responsible for host cell attachment and penetration via its receptor-binding domain (RBD domain). The level of anti-RBD IgG antibodies was tested with an ELISA-based immunodiagnostic assay in serum samples from a total of 1395 patients at 3 time points: before vaccination, after the first dose, and after the second dose. Our novel statistical model, the Generalized Additive Model, revealed variability in antibody production dynamics for both vaccines. Interestingly, no discernible variation in antibody levels between men and women was found. A nonlinear relationship between age and antibody production was observed, characterized by decreased antibody levels for people up to 30 and over 60 years of age, with a lack of correlation in the middle age range. Collectively, our findings further the understanding of the mechanism driving vaccine-induced immunity. Additionally, we propose the Generalized Additive Model as a standardized way of presenting data in similar research.


Assuntos
Vacina BNT162 , COVID-19 , Masculino , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , ChAdOx1 nCoV-19 , Estudos de Coortes , SARS-CoV-2 , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
2.
Int J Bioprint ; 9(1): 621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844246

RESUMO

1The necessity to preserve meniscal function prompts the research and development of novel treatment options, like three-dimensional (3D) bioprinting. However, bioinks for meniscal 3D bioprinting have not been extensively explored. Therefore, in this study, a bioink composed of alginate, gelatin, and carboxymethylated cellulose nanocrystal (CCNC) was formulated and evaluated. Firstly, bioinks with varying concentrations of the aforementioned components were subjected to rheological analysis (amplitude sweep test, temperature sweep test, and rotation). The optimal bioink formulation of 4.0% gelatin, 0.75% alginate, and 1.4% CCNC dissolved in 4.6% D-mannitol was further used for printing accuracy analysis, followed by 3D bioprinting with normal human knee articular chondrocytes (NHAC-kn). The encapsulated cells' viability was > 98%, and collagen II expression was stimulated by the bioink. The formulated bioink is printable, stable under cell culture conditions, biocompatible, and able to maintain the native phenotype of chondrocytes. Aside from meniscal tissue bioprinting, it is believed that this bioink could serve as a basis for the development of bioinks for various tissues.

3.
Int Orthop ; 47(10): 2409-2417, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36764942

RESUMO

PURPOSE: The functional outcomes of arthroscopic matrix-based meniscus repair (AMMR) in patients two and five years after the treatment clearly show that the use of the collagen matrix and bone marrow aspirate creates favorable biological conditions for meniscus healing. This study not only provides ten follow-up results but also investigates biomolecular mechanisms governing the regenerative process. METHODS: Case series was based on data collected from patients who underwent AMMR procedure, starting with preoperatively through two-year and five-year till ten-year follow-up. The outcomes are presented as IKDC and the Lysholm subjective scores as well as the imaging results. Biomolecular investigation of the membranes utilized in the AMMR procedure include DNA content analysis, cell viability and proliferation study of bone marrow and bone marrow concentrate-derived cells, and cytokine array performed on monocytes cultured on the membranes. CONCLUSION: Data collected from patients who underwent AMMR procedure, starting with pre-operatively through two year and five year till ten year follow-up, indicate the possibility for long-term, stable meniscus preservation. Outcomes are manifested with a visible improvement of the IKDC and the Lysholm subjective scores as well as in the imaging results. The type of the meniscal tear or complexity of the knee injury (isolated AMMR vs. AMMR + ACL) did not affect the clinical outcomes. The study highlighted the role of the membrane in facilitating cell adhesion and proliferation. Additionally, several cytokines were selected as potentially crucial products of the membrane vs. monocyte interactions, driving the tissue regeneration and remodeling. Interestingly, thresholds of what constitutes a safe and well-decellularized membrane according to relevant literature have been significantly breached, but ultimately did not elicit detrimental side effects.


Assuntos
Traumatismos do Joelho , Menisco , Humanos , Resultado do Tratamento , Medula Óssea , Seguimentos , Colágeno/uso terapêutico , Traumatismos do Joelho/cirurgia , Artroscopia/métodos , Meniscos Tibiais/cirurgia
4.
Sci Rep ; 13(1): 646, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635477

RESUMO

Articular cartilage and meniscus injuries are prevalent disorders with insufficient regeneration responses offered by available treatment methods. In this regard, 3D bioprinting has emerged as one of the most promising new technologies, offering novel treatment options. Additionally, the latest achievements from the fields of biomaterials and tissue engineering research identified constituents facilitating the creation of biocompatible scaffolds. In this study, we looked closer at hyaluronic acid and multi-walled carbon nanotubes as bioink additives. Firstly, we assessed the minimal concentrations that stimulate cell viability, and decrease reactive oxygen species and apoptosis levels in 2D cell cultures of normal human knee articular chondrocytes (NHAC) and human adipose-derived mesenchymal stem cells (hMSC-AT). In this regard, 0.25 mg/ml of hyaluronic acid and 0.0625 mg/ml of carbon nanotubes were selected as the most optimal concentrations. In addition, we investigated the protective influence of 2-phospho-L-ascorbic acid in samples with carbon nanotubes. Tests conducted on 3D bioprinted constructs revealed that only a combination of components positively impacted cell viability throughout the whole experiment. Gene expression analysis of COL1A1, COL6A1, HIF1A, COMP, RUNX2, and POU5F1 showed significant changes in the expression of all analyzed genes with a progressive overall loss of transcriptional activity in most of them.


Assuntos
Bioimpressão , Cartilagem Articular , Nanotubos de Carbono , Humanos , Engenharia Tecidual/métodos , Ácido Hialurônico/farmacologia , Alicerces Teciduais , Bioimpressão/métodos , Impressão Tridimensional
5.
Materials (Basel) ; 13(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933020

RESUMO

Cartilage and bone injuries are prevalent ailments, affecting the quality of life of injured patients. Current methods of treatment are often imperfect and pose the risk of complications in the long term. Therefore, tissue engineering is a rapidly developing branch of science, which aims at discovering effective ways of replacing or repairing damaged tissues with the use of scaffolds. However, both cartilage and bone owe their exceptional mechanical properties to their complex ultrastructure, which is very difficult to reproduce artificially. To address this issue, nanotechnology was employed. One of the most promising nanomaterials in this respect is carbon nanotubes, due to their exceptional physico-chemical properties, which are similar to collagens-the main component of the extracellular matrix of these tissues. This review covers the important aspects of 3D scaffold development and sums up the existing research tackling the challenges of scaffold design. Moreover, carbon nanotubes-reinforced bone and cartilage scaffolds manufactured using the 3D bioprinting technique will be discussed as a novel tool that could facilitate the achievement of more biomimetic structures.

6.
Sci Rep ; 10(1): 2725, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066785

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for wide variety of applications. Their unique properties render them highly applicable as MRI contrast agents, in magnetic hyperthermia or targeted drug delivery. SPIONs surface properties affect a whole array of parameters such as: solubility, toxicity, stability, biodistribution etc. Therefore, progress in the field of SPIONs surface functionalization is crucial for further development of therapeutic or diagnostic agents. In this study, SPIONs were synthesized by thermal decomposition of iron (III) acetylacetonate Fe(acac)3 and functionalized with dihexadecyl phosphate (DHP) via phase transfer. Bioactivity of the SPION-DHP was assessed on SW1353 and TCam-2 cancer derived cell lines. The following test were conducted: cytotoxicity and proliferation assay, reactive oxygen species (ROS) assay, SPIONs uptake (via Iron Staining and ICP-MS), expression analysis of the following genes: alkaline phosphatase (ALPL); ferritin light chain (FTL); serine/threonine protein phosphatase 2A (PP2A); protein tyrosine phosphatase non-receptor type 11 (PTPN11); transferrin receptor 1 (TFRC) via RT-qPCR. SPION-DHP nanoparticles were successfully obtained and did not reveal significant cytotoxicity in the range of tested concentrations. ROS generation was elevated, however not correlated with the concentrations. Gene expression profile was slightly altered only in SW1353 cells.


Assuntos
Condrócitos/efeitos dos fármacos , Compostos Férricos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas de Magnetita/química , Organofosfatos/química , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Apoferritinas/genética , Apoferritinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Compostos Férricos/química , Humanos , Hidroxibutiratos/química , Pentanonas/química , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Succímero/química
7.
Vaccines (Basel) ; 7(4)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835350

RESUMO

Chronic hepatitis B (CHB) is the cause of severe liver damage, cirrhosis, and hepatocellular carcinoma for over 240 million people worldwide. Nowadays, several types of treatment are being investigated, including immunotherapy using hepatitis B core antigen (HBcAg) assembled into highly immunogenic capsid-like particles (CLPs). Immunogenicity of plant-produced and purified HBcAg, administered parenterally or intranasally, was previously reported. In this study, a novel parenteral-oral vaccination scheme is proposed using plant-derived HBcAg preparations. The antigen for injection was obtained via transient expression in Nicotiana benthamiana. HBcAg-producing transgenic lettuce was lyophilized and used as an orally delivered booster. The intracellular location of plant-produced HBcAg CLPs implies additional protection in the digestive tract during oral immunization. BALB/c mice were intramuscularly primed with 10 µg of the purified antigen and orally boosted twice with 5 or 200 ng of HBcAg. A long-lasting and significant systemic response after boosting with 200 ng HBcAg was induced, with anti-HBc titer of 25,000. Concomitantly, an insignificant mucosal response was observed, with an S-IgA titer of only 500. The profile of IgG isotypes indicates a predominant Th1 type of immune response, supplemented by Th2, after injection-oral vaccination. The results demonstrate that a low dose of parenteral-oral immunization with plant-derived HBcAg can elicit a specific and efficient response. This study presents a potential new pathway of CHB treatment.

8.
J Clin Med ; 8(11)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684201

RESUMO

The nanoindentation method was applied to determine the elastic modulus and hardness of knee articular cartilage. Cartilage samples from both high weight bearing (HWB) and low weight bearing (LWB) femoral condyles were collected from patients diagnosed with osteoarthritis (OA). The mean elastic modulus of HWB cartilage was 4.46 ± 4.44 MPa in comparison to that of the LWB region (9.81 ± 8.88 MPa, p < 0.001). Similarly, the hardness was significantly lower in HWB tissue (0.317 ± 0.397 MPa) than in LWB cartilage (0.455 ± 0.434 MPa, p < 0.001). When adjusted to patients' ages, the mean elastic modulus and hardness were both significantly lower in the age group over 70 years (p < 0.001). A statistically significant difference in mechanical parameters was also found in grade 3 and 4 OA. This study provides an insight into the nanomechanical properties of the knee articular cartilage and provides a starting point for personalized cartilage grafts that are compatible with the mechanical properties of the native tissue.

9.
Nanomaterials (Basel) ; 9(2)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691173

RESUMO

Core-virus like particles (VLPs) assembly is a kinetically complex cascade of interactions between viral proteins, nanoparticle's surface and an ionic environment. Despite many in silico simulations regarding this process, there is still a lack of experimental data. The main goal of this study was to investigate the capsid protein of hepatitis B virus (HBc) assembly into virus-like particles with superparamagnetic iron oxide nanoparticles (SPIONs) as a magnetic core in relation to their characteristics. The native form of HBc was obtained via agroinfection of Nicotiana benthamiana with pEAQ-HBc plasmid. SPIONs of diameter of 15 nm were synthesized and functionalized with two ligands, providing variety in ζ-potential and hydrodynamic diameter. The antigenic potential of the assembled core-VLPs was assessed with enzyme-linked immunosorbent assay (ELISA). Morphology of SPIONs and core-VLPs was evaluated via transmission electron microscopy (TEM). The most successful core-VLPs assembly was obtained for SPIONs functionalized with dihexadecyl phosphate (DHP) at SPIONs/HBc ratio of 0.2/0.05 mg/mL. ELISA results indicate significant decrease of antigenicity concomitant with core-VLPs assembly. In summary, this study provides an experimental assessment of the crucial parameters guiding SPION-HBc VLPs assembly and evaluates the antigenicity of the obtained structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...