Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36365673

RESUMO

Additive manufacturing (AM) techniques can be applied to produce carbon-fiber-reinforced polymer (CFRP) elements. Such elements can be exposed to different environmental factors, e.g., temperature, moisture, and UV radiation, related to their operational conditions. From a variety of environmental factors, the temperature is one of the most typical. Temperature strongly influences matrix material joining together CFRP components, resulting in material strength reduction. Therefore, it is important to understand processes in the composite material caused by temperature. This experimental work investigated the thermal effects on the performances of AM CFRP composites. Specimens with unidirectional (UD) alignments of the fiber reinforcement were printed using the fused deposition modeling (FDM) technique. The printed specimens were subjected to two different thermal conditions: stable continuous at 65 °C and cyclic temperature between 50 and 70 °C. Tensile testing was performed to study the mechanical strength and Young's modulus of AM UD-CFRPs. In order to investigate the morphological structure on the surface of AM specimens, an optical microscope, scanning electron microscope (SEM), and digital microscope were utilized. Untreated (intact) samples attained the highest average tensile strength value of 226.14 MPa and Young's modulus of 28.65 GPa. The ultimate tensile strength of the sample group subjected to stable heat treatment decreased to 217.99 MPa, while the thermal cycling group reduced to 204.41 MPa. The Young's modulus of the sample group subjected to stable thermal exposure was decreased to 25.39 GPa, while for the thermal cycling group, it was reduced to 20.75 GPa. The visual investigations revealed that the intact or untreated specimen group exhibited lateral damage in top failure mode (LAT), the thermally stable group underwent edge delamination in the middle (DGM) as the nominated failure mode, and the explosive breakage at gauge in the middle (XGM) failure mode occurred in the sample from the thermal cycling group. Based on morphological observations at the microscale, the delamination, fiber pull-out, and matrix cracking were the dominant damages in the 3D-printed tensile-tested specimens. The molecular chains of the polymer changed their structure into an amorphous one, and only local motions of stretching occurred when the specimens were exposed to stable heating (prolonged). In the case of thermal cycling, the strain gradients were accumulated in the matrix material, and the local stresses increased as a result of the reheating and re-cooling exposure of the polymeric composites; the molecular motion of the long-range polymer structure was reactivated several times. Micro-cracking occurred as a result of internal stresses, which led to material failure and a reduction of the mechanical properties.

2.
Materials (Basel) ; 15(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35407984

RESUMO

Additive manufacturing (AM) polymers are applied in many branches of the industry due to the possibility of fast and accurate production of elements with various and complex shapes. Fibre Bragg grating sensors (FBG) are widely applied in structural health monitoring (SHM) systems. The main objective of this research is to perform analyses of the influence of embedded FBG sensors on AM polymer elements' durability. Two polymers (M3 X and M3 Crystal) with different mechanical properties were analysed. The tests were performed on samples with FBG sensors embedded in (different alignment) and attached to the surfaces of the elements. Firstly, the samples were exposed to elevated or sub-zero temperatures under stable relative humidity levels. The strain in the samples was measured using fibre Bragg grating (FBG) sensors. The achieved results allow us to determine the relationships between strain and temperature for both materials and the differences in their mechanical response to the thermal loading. Then, the samples were subjected to a tensile test. A comparison of the tensile strength values was performed for the samples without and with embedded FBG sensors. The samples after the tensile tests were compared, showing differences in the mechanisms of failures related to the polymers and the thermal treatment influence on the material internal structure. Additionally, strain values measured by the FBG sensors were compared to the strain values achieved from the testing machine showing a good agreement (especially for M3 X) and indicating the differences in the materials' mechanical properties. The achieved results allow us to conclude there is a lack of influence of embedded FBG sensors on the mechanical durability of AM polymers.

3.
Materials (Basel) ; 14(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771938

RESUMO

The popular applications of Additive Manufactured (AM) polymer materials in engineering, medical, and industrial fields have been widely recognized due to their high-speed production despite their complex design shapes. Fused Deposition Modeling (FDM) is the technique that has become the most renowned AM process due to its simplicity and because it is the cheapest method. The main objective of this research is to perform a numerical simulation of the thermo-mechanical behaviour of AM polymer with continuous carbon fibre reinforcement exposed to elevated temperatures. The influence of global thermal loads on AM material was focused on mechanical property changes at the microscale (level of fiber-matrix interaction). The mechanical response (strain/stress distribution) of the AM material on the temperature loading was modelled using the finite element method (FEM). The coupled thermal-displacement analysis was used during the numerical calculations. The strain in the sample due to its exposition on elevated temperature was measured using fibre Bragg grating (FBG) sensors. The numerical results were compared with the experimental results achieved for the sample exposure to the same thermal conditions showing good agreement. A strong influence of the temperature on the matrix structure and the condition of bondings between fibres and matrix was observed.

4.
Materials (Basel) ; 15(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009368

RESUMO

This study investigates the thermo-mechanical behaviour of additively manufactured Carbon Fiber Reinforced Polymer (CFRP) with embedded Fibre Bragg Grating (FBG) sensors with respect to their feasibility for utilising them under thermal loading. This was conducted through the Finite Element Method (FEM) inside an ABAQUS environment. Numerical simulation was complemented by several experimental investigations in order to verify the computational results achieved for the specimens exposed to thermal loading. FBG sensors, incorporated into the material by embedding technique, were employed to measure the strains of the samples subjected to elevated temperatures. It was shown that the strains given by numerical simulation were in good agreement with the experimental investigation except for a few errors due to the defects created within the layers during Additive Manufacturing (AM) process. It was concluded that the embedding FBG sensors were capable of identifying thermo-mechanical strain accurately for 3D-printed composite structures. Therefore, the findings of this article could be further developed for other types of material and loading conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...