Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 9: 1356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245701

RESUMO

Late maturity α-amylase (LMA) and pre-harvest sprouting (PHS) are both recognized as environmentally induced grain quality defects resulting from abnormally high levels of α-amylase. LMA is a more recently identified quality issue that is now receiving increasing attention worldwide and whose prevalence is now seen as impeding the development of superior quality wheat varieties. LMA is a genetic defect present in specific wheat genotypes and is characterized by elevated levels of the high pI TaAMY1 α-amylase, triggered by environmental stress during wheat grain development. TaAMY1 remains present in the aleurone through the harvest, lowering Falling Number (FN) at receival, causing a down-grading of the grain, often to feed grade, thus reducing the farmers' income. This downgrading is based on the assumption within the grain industry that, as for PHS, a low FN represents poor quality grain. Consequently any wheat line possessing low FN or high α-amylase levels is automatically considered a poor bread wheat despite there being no published evidence to date, to show that LMA is detrimental to end product quality. To evaluate the validity of this assumption a comprehensive evaluation of baking properties was performed from LMA prone lines using a subset of tall non-Rht lines from a multi-parent advanced generation inter-cross (MAGIC) wheat population grown at three different sites. LMA levels were determined along with quality parameters including end product functionality such as oven spring, bread loaf volume and weight, slice area and brightness, gas cell number and crumb firmness. No consistent or significant phenotypic correlation was found between LMA related FN and any of the quality traits. This manuscript provides for the first time, compelling evidence that LMA has limited impact on bread baking end product functionality.

2.
PLoS One ; 11(7): e0159955, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27459606

RESUMO

This study describes a new approach in the screening for loss-of-gene mutants in Heavy Ion Bombardment (HIB) mutant populations of genetically complex organisms such as hexaploid bread wheat using multiplexed single-color (SYBR Green) melt curve analyses. The assay was set up for three target genes to test its validity and applicability. For each gene, three genome-specific primer pairs (one for each genome) with distinct melt curves were developed and multiplexed. This allowed screening for "single null mutants" (plants with the target gene deleted in one of the three genomes) for all three genomes in a single reaction. The first two genes (α-Amylase 3 and Epsilon Cyclase) were used to test the approach as HIB null lines for all three genomes were already available for these. The third assay was successfully applied to identify new single null lines of the target gene α-Amylase 2 in an in-house HIB wheat collection. The use of SYBR Green greatly reduced the time and/or cost investment compared to other techniques and the approach proved highly suitable for high-throughput applications.


Assuntos
Deleção de Genes , Reação em Cadeia da Polimerase Multiplex/métodos , Triticum/genética , Amilases/genética , Liases Intramoleculares/genética , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Poliploidia
3.
BMC Plant Biol ; 13: 71, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23627847

RESUMO

BACKGROUND: A crucial step in the evaluation of newly produced transgenic plants is the selection of homozygous plants. Here we describe an efficient and highly flexible real-time PCR-based method for the development of homozygous lines in plant models with complex (multiple) genomes and/or relatively long generation times (>3 months) using direct copy number determinations. RESULTS: An existing DNA extraction method was converted into a high-throughput plant leaf DNA extraction procedure yielding DNA suitable for real-time PCR analyses. Highly specific and efficient primer pairs were developed for a bread wheat reference gene (Epsilon Cyclase) and for standard sequence elements in the gene cassette routinely used for cereal transformations (an intron bridge and the Nopaline Synthase terminator). The real-time PCR assay reliably distinguished wheat plants with a single copy of the transgene from individuals with multiple copies or those lacking the transgene. To obtain homozygous lines carrying a unique insertion event as efficiently as possible, T0 plants (plants raised from transformed callus) with a single copy of the transgene were selected and their progeny screened for homozygous plants. Finally, the assay was adapted to work on rice. CONCLUSIONS: The ability to quickly, easily and accurately quantify the construct copy numbers, as provided by the real-time PCR assay, greatly improved the efficiency and reliability of the selection of homozygous transgenic plants in our case study. We were able to select homozygous plants in early generations, avoiding time-consuming methods such as large scale analysis of segregation patterns of descendants and/or Southern blotting. Additionally, the ability to specifically develop homozygous lines carrying a unique insertion event could be important in avoiding gene silencing due to co-suppression, and if needed assist in the selection of lines suitable for future deregulation. The same primer pairs can be used to quantify many different wheat transgenic events because the construct-specific primer pairs are targeted to standard sequence elements of the cereal gene cassettes, making the method widely applicable in wheat GM research. Moreover, because all procedures described here are standardized, the method may easily be adapted to vectors lacking the target regions used here and/or to other plant models.


Assuntos
Oryza/genética , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Triticum/genética , DNA de Plantas/genética , Dosagem de Genes , Transgenes
4.
PLoS One ; 4(7): e6364, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19629182

RESUMO

BACKGROUND: Reef-building corals live in symbiosis with a diverse range of dinoflagellate algae (genus Symbiodinium) that differentially influence the fitness of the coral holobiont. The comparative role of symbiont type in holobiont fitness in relation to host genotype or the environment, however, is largely unknown. We addressed this knowledge gap by manipulating host-symbiont combinations and comparing growth, survival and thermal tolerance among the resultant holobionts in different environments. METHODOLOGY/PRINCIPAL FINDINGS: Offspring of the coral, Acropora millepora, from two thermally contrasting locations, were experimentally infected with one of six Symbiodinium types, which spanned three phylogenetic clades (A, C and D), and then outplanted to the two parental field locations (central and southern inshore Great Barrier Reef, Australia). Growth and survival of juvenile corals were monitored for 31-35 weeks, after which their thermo-tolerance was experimentally assessed. Our results showed that: (1) Symbiodinium type was the most important predictor of holobiont fitness, as measured by growth, survival, and thermo-tolerance; (2) growth and survival, but not heat-tolerance, were also affected by local environmental conditions; and (3) host population had little to no effect on holobiont fitness. Furthermore, coral-algal associations were established with symbiont types belonging to clades A, C and D, but three out of four symbiont types belonging to clade C failed to establish a symbiosis. Associations with clade A had the lowest fitness and were unstable in the field. Lastly, Symbiodinium types C1 and D were found to be relatively thermo-tolerant, with type D conferring the highest tolerance in A. millepora. CONCLUSIONS/SIGNIFICANCE: These results highlight the complex interactions that occur between the coral host, the algal symbiont, and the environment to shape the fitness of the coral holobiont. An improved understanding of the factors affecting coral holobiont fitness will assist in predicting the responses of corals to global climate change.


Assuntos
Antozoários/fisiologia , Simbiose , Animais , Antozoários/classificação , Filogenia
5.
PLoS One ; 4(2): e4511, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19225559

RESUMO

BACKGROUND: Coral diseases are emerging as a serious threat to coral reefs worldwide. Of nine coral infectious diseases, whose pathogens have been characterized, six are caused by agents from the family Vibrionacae, raising questions as to their origin and role in coral disease aetiology. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on a Vibrio zinc-metalloprotease causing rapid photoinactivation of susceptible Symbiodinium endosymbionts followed by lesions in coral tissue. Symbiodinium photosystem II inactivation was diagnosed by an imaging pulse amplitude modulation fluorometer in two bioassays, performed by exposing Symbiodinium cells and coral juveniles to non-inhibited and EDTA-inhibited supernatants derived from coral white syndrome pathogens. CONCLUSION/SIGNIFICANCE: These findings demonstrate a common virulence factor from four phylogenetically related coral pathogens, suggesting that zinc-metalloproteases may play an important role in Vibrio pathogenicity in scleractinian corals.


Assuntos
Antozoários/microbiologia , Metaloproteases/fisiologia , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Vibrio/patogenicidade , Animais , Infecções Bacterianas/enzimologia , Vibrio/enzimologia , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...