Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stud Health Technol Inform ; 310: 921-925, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269943

RESUMO

Algorithms increasing the transparence and explain ability of neural networks are gaining more popularity. Applying them to custom neural network architectures and complex medical problems remains challenging. In this work, several algorithms such as integrated gradients and grad came were used to generate additional explainable outputs for the classification of lung perfusion changes and mucus plugging in cystic fibrosis patients on MRI. The algorithms are applied on top of an already existing deep learning-based classification pipeline. From six explain ability algorithms, four were implemented successfully and one yielded satisfactory results which might provide support to the radiologist. It was evident, that the areas relevant for the classification were highlighted, thus emphasizing the applicability of deep learning for classification of lung changes in CF patients. Using explainable concepts with deep learning could improve confidence of clinicians towards deep learning and introduction of more diagnostic decision support systems.


Assuntos
Fibrose Cística , Aprendizado Profundo , Humanos , Inteligência Artificial , Fibrose Cística/diagnóstico por imagem , Algoritmos , Imageamento por Ressonância Magnética
2.
Sci Data ; 10(1): 207, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059736

RESUMO

We present CARDIO:DE, the first freely available and distributable large German clinical corpus from the cardiovascular domain. CARDIO:DE encompasses 500 clinical routine German doctor's letters from Heidelberg University Hospital, which were manually annotated. Our prospective study design complies well with current data protection regulations and allows us to keep the original structure of clinical documents consistent. In order to ease access to our corpus, we manually de-identified all letters. To enable various information extraction tasks the temporal information in the documents was preserved. We added two high-quality manual annotation layers to CARDIO:DE, (1) medication information and (2) CDA-compliant section classes. To the best of our knowledge, CARDIO:DE is the first freely available and distributable German clinical corpus in the cardiovascular domain. In summary, our corpus offers unique opportunities for collaborative and reproducible research on natural language processing models for German clinical texts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...