Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705380

RESUMO

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome that is most commonly triggered by infection-related inflammation. Lung pericytes can respond to infection and act as immune and proangiogenic cells; moreover, these cells can differentiate into myofibroblasts in nonresolving ARDS and contribute to the development of pulmonary fibrosis. Here, we aimed to characterize the role of lung cells, which present characteristics of pericytes, such as peri-endothelial location and expression of a panel of specific markers. To study their role in ARDS, we used a murine model of lipopolysaccharide (LPS)-induced resolving ARDS. We confirmed the development of ARDS after LPS instillation, which was resolved 14 days after onset. Using immunofluorescence and flow cytometry, we observed early expansion of neural-glial antigen 2+ ß-type platelet-derived growth factor receptor+ pericytes in murine lungs with loss of CD31+ ß-type platelet-derived growth factor receptor+ endothelial cells. These changes were accompanied by specific changes in lung structure and loss of vascular integrity. On day 14 after ARDS onset, the composition of pericytes and endothelial cells returned to baseline values. LPS-induced ARDS activated NOTCH signaling in lung pericytes, the inhibition of which during LPS stimulation reduced the expression of its downstream target genes, pericyte markers, and angiogenic factors. Together, lung pericytes in response to inflammatory injury activate NOTCH signaling that supports their maintenance and in turn can contribute to recovery of the microvascular endothelium.

2.
Sci Rep ; 13(1): 15046, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699959

RESUMO

Muscle satellite cells (SCs) are stem cells and the main players in skeletal muscle reconstruction. Since satellite cells are located near or in direct contact with blood vessels their niche is formed, inter alia, by endothelial cells. The cross-talk between satellite cells and endothelial cells determines quiescence or proliferation of these cells. However, little is known about the role of miRNA in these interactions. In the present study we identified miRNA that were up-regulated in SC-derived myoblasts treated with stromal derived factor-1 (SDF-1) and/or down-regulated in cells in which the expression of CXCR4 or CXCR7, that is, SDF-1 receptors, was silenced. SDF-1 is one of the important regulators of cell migration, mobilization, skeletal muscle regeneration, and angiogenesis. We hypothesized that selected miRNAs affect SC-derived myoblast fate and interactions with endothelial cells. We showed that miR-126a-3p inhibited both, myoblast migration and fusion. Moreover, the levels of Cxcl12, encoding SDF-1 and Ackr3, encoding CXCR7, were reduced by miR-126a-3p mimic. Interestingly, the miR-126a-3p mimic significantly decreased the level of numerous factors involved in myogenesis and the miR-126a-5p mimic increased the level of Vefga. Importantly, the treatment of endothelial cells with medium conditioned by miR-126-5p mimic transfected SC-derived myoblasts promoted tubulogenesis.


Assuntos
Células Endoteliais , MicroRNAs , Comunicação Celular/genética , Mioblastos , Células-Tronco , Fibrinogênio , MicroRNAs/genética
3.
Bone ; 176: 116883, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597797

RESUMO

Heterotopic ossification (HO) means the formation of bone in muscles and soft tissues, such as ligaments or tendons. HO could have a genetic history or develop after a traumatic event, as a result of muscle injury, fractures, burns, surgery, or neurological disorders. Many lines of evidence suggest that the formation of HO is related to the pathological differentiation of stem or progenitor cells present within soft tissues or mobilized from the bone marrow. The cells responsible for the initiation and progression of HO are generally called HO precursor cells. The exact mechanisms behind the development of HO are not fully understood. However, several factors have been identified as potential contributors. For example, local tissue injury and inflammation disturb soft tissue homeostasis. Inflammatory cells release growth factors and cytokines that promote osteogenic or chondrogenic differentiation of HO precursor cells. The bone morphogenetic protein (BMP) is one of the main factors involved in the development of HO. In this study, next-generation sequencing (NGS) and RT-qPCR were performed to analyze the differences in mRNA, miRNA, and lncRNA expression profiles between muscles, control bone samples, and HO samples coming from patients who underwent total hip replacement (THR). As a result, crucial changes in the level of gene expression between HO and healthy tissues were identified. The bioinformatic analysis allowed to describe the processes most severely impacted, as well as genes which level differed the most significantly between HO and control samples. Our analysis showed that the level of transcripts involved in leukocyte migration, differentiation, and activation, as well as markers of chronic inflammatory diseases, that is, miR-148, increased in HO, as compared to muscle. Furthermore, the levels of miR-195 and miR-143, which are involved in angiogenesis, were up-regulated in HO, as compared to bone. Thus, we suggested that inflammation and angiogenesis play an important role in HO formation. Importantly, we noticed that HO is characterized by a higher level of TLR3 expression, compared to muscle and bone. Thus, we suggest that infection may also be a risk factor in HO development. Furthermore, an increased level of transcripts coding proteins involved in osteogenesis and signaling pathways, such as ALPL, SP7, BGLAP, BMP8A, BMP8B, SMPD3 was noticed in HO, as compared to muscles. Interestingly, miR-99b, miR-146, miR-204, and LINC00320 were up-regulated in HO, comparing to muscles and bone. Therefore, we suggested that these molecules could be important biomarkers of HO formation and a potential target for therapies.


Assuntos
MicroRNAs , Ossificação Heterotópica , Humanos , RNA não Traduzido , Fatores de Risco , MicroRNAs/genética , Inflamação/genética , Biomarcadores , Ossificação Heterotópica/genética
4.
Stem Cell Res Ther ; 14(1): 204, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582765

RESUMO

BACKGROUND: Skeletal muscle regeneration is a complex process regulated by many cytokines and growth factors. Among the important signaling pathways regulating the myogenic cell identity are these involving SDF-1 and NOTCH. SDF-1 participates in cell mobilization and acts as an important chemoattractant. NOTCH, on the other hand, controls cell activation and myogenic determination of satellite cells. Knowledge about the interaction between SDF-1 and NOTCH signaling is limited. METHODS: We analyzed two populations of myogenic cells isolated from mouse skeletal muscle, that is, myoblasts derived from satellite cells (SCs) and muscle interstitial progenitor cells (MIPCs). First, microRNA level changes in response to SDF-1 treatment were analyzed with next-generation sequencing (NGS). Second, myogenic cells, i.e., SC-derived myoblasts and MIPCs were transfected with miRNA mimics, selected on the basis of NGS results, or their inhibitors. Transcriptional changes, as well as proliferation, migration, and differentiation abilities of SC-derived myoblasts and MIPCs, were analyzed in vitro. Naive myogenic potential was assessed in vivo, using subcutaneous engrafts and analysis of cell contribution to regeneration of the skeletal muscles. RESULTS: SDF-1 treatment led to down-regulation of miR10a, miR151, miR425, and miR5100 in myoblasts. Interestingly, miR10a, miR425, and miR5100 regulated the expression of factors involved in the NOTCH signaling pathway, including Dll1, Jag2, and NICD. Furthermore, miR10a, miR425, and miR5100 down-regulated the expression of factors involved in cell migration: Acta1, MMP12, and FAK, myogenic differentiation: Pax7, Myf5, Myod, Mef2c, Myog, Musk, and Myh3. However, these changes did not significantly affect myogenic cell migration or fusion either in vitro or in vivo, except when miR425 was overexpressed, or miR5100 inhibitor was used. These two molecules increased the fusion of MIPCs and myoblasts, respectively. Furthermore, miR425-transfected MIPC transplantation into injured skeletal muscle resulted in more efficient regeneration, compared to control cell transplantation. However, skeletal muscles that were injected with miR10a transfected myoblasts regenerated less efficiently. CONCLUSIONS: SDF-1 down-regulates miR10a, miR425, and miR5100, what could affect NOTCH signaling, differentiation of myogenic cells, and their participation in skeletal muscle regeneration.


Assuntos
Diferenciação Celular , Quimiocina CXCL12 , MicroRNAs , Músculo Esquelético , Receptores Notch , Células Satélites de Músculo Esquelético , Animais , Camundongos , Movimento Celular , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , MicroRNAs/genética , Receptores Notch/metabolismo , Quimiocina CXCL12/metabolismo
5.
Stem Cell Res Ther ; 13(1): 523, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522666

RESUMO

Heterotopic ossification (HO) is the formation of bone in non-osseous tissues, such as skeletal muscles. The HO could have a genetic or a non-genetic (acquired) background, that is, it could be caused by musculoskeletal trauma, such as burns, fractures, joint arthroplasty (traumatic HO), or cerebral or spinal insult (neurogenetic HO). HO formation is caused by the differentiation of stem or progenitor cells induced by local or systemic imbalances. The main factors described so far in HO induction are TGFß1, BMPs, activin A, oncostatin M, substance P, neurotrophin-3, and WNT. In addition, dysregulation of noncoding RNAs, such as microRNA or long noncoding RNA, homeostasis may play an important role in the development of HO. For example, decreased expression of miRNA-630, which is responsible for the endothelial-mesenchymal transition, was observed in HO patients. The reduced level of miRNA-421 in patients with humeral fracture was shown to be associated with overexpression of BMP2 and a higher rate of HO occurrence. Down-regulation of miRNA-203 increased the expression of runt-related transcription factor 2 (RUNX2), a crucial regulator of osteoblast differentiation. Thus, understanding the various functions of noncoding RNAs can reveal potential targets for the prevention or treatment of HO.


Assuntos
MicroRNAs , Ossificação Heterotópica , RNA Longo não Codificante , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Osteogênese/genética , Diferenciação Celular/genética
6.
Stem Cell Rev Rep ; 18(6): 2164-2178, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35190967

RESUMO

BACKGROUND: Bone marrow stromal cells (BMSCs) form a perivascular cell population in the bone marrow. These cells do not present naïve myogenic potential. However, their myogenic identity could be induced experimentally in vitro or in vivo. In vivo, after transplantation into injured muscle, BMSCs rarely fused with myofibers. However, BMSC participation in myofiber reconstruction increased if they were modified by NICD or PAX3 overexpression. Nevertheless, BMSCs paracrine function could play a positive role in skeletal muscle regeneration. Previously, we showed that SDF-1 treatment and coculture with myofibers increased BMSC ability to reconstruct myofibers. We also noticed that SDF-1 treatment changed selected miRNAs expression, including miR151 and miR5100. METHODS: Mouse BMSCs were transfected with miR151 and miR5100 mimics and their proliferation, myogenic differentiation, and fusion with myoblasts were analyzed. RESULTS: We showed that miR151 and miR5100 played an important role in the regulation of BMSC proliferation and migration. Moreover, the presence of miR151 and miR5100 transfected BMSCs in co-cultures with human myoblasts increased their fusion. This effect was achieved in an IGFBP2 dependent manner. CONCLUSIONS: Mouse BMSCs did not present naïve myogenic potential but secreted proteins could impact myogenic cell differentiation. miR151 and miR5100 transfection changed BMSC migration and IGFBP2 and MMP12 expression in BMSCs. miR151 and miR5100 transfected BMSCs increased myoblast fusion in vitro.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea , Diferenciação Celular/genética , Humanos , Camundongos , Mioblastos
7.
Stem Cell Res Ther ; 12(1): 448, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372911

RESUMO

BACKGROUND: The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. METHODS: In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. RESULTS: We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. CONCLUSIONS: We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation.


Assuntos
Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Hipóxia , Camundongos , Músculo Esquelético , Mioblastos , Células-Tronco , Suínos
8.
Postepy Biochem ; 67(4): 420-435, 2021 12 31.
Artigo em Polonês | MEDLINE | ID: mdl-35107957

RESUMO

MicroRNAs (miRNAs), although do not encode proteins, they are involved in many biological processes. Here we focus on their role in skeletal muscle development and function. In health, they play an important role during skeletal muscle regeneration by regulating satellite cells quiescence, activation, proliferation, differentiation into myoblasts, and finally formation of myotubes. Moreover, miRNAs play a role in muscles disease development. For this reason, they can be used as disease biomarkers or potential therapeutic targets. Moreover, physical activity also influences the changes in miRNA expression. Certain types of exercises, their duration, and intensity differently impact the expression of many miRNAs.


Assuntos
MicroRNAs , Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular , Músculo Esquelético
9.
Stem Cell Res Ther ; 11(1): 341, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762770

RESUMO

BACKGROUND: The skeletal muscle regeneration relays on the satellite cells which are stem cells located between basal lamina and plasmalemma of muscle fiber. In the injured muscles, the satellite cells become activated, start to proliferate, and then differentiate into myoblasts, which fuse to form myotubes and finally myofibers. The satellite cells play the crucial role in the regeneration; however, other cells present in the muscle could also support this process. In the present study, we focused on one population of such cells, i.e., muscle interstitial progenitor cells. METHODS: We used the CD146 marker to identify the population of mouse muscle interstitial cells. We analyzed the expression of selected markers, as well as clonogenic, myogenic, adipogenic, and chondrogenic potential in vitro. Simultaneously, we analyzed satellite cell-derived myoblasts and bone marrow-derived mesenchymal stem/stromal cells that allowed us to pinpoint the differences between these cell populations. Moreover, we isolated CD146+ cells and performed heterotopic transplantations to follow their in vivo differentiation. RESULTS: Mouse muscle CD146+ interstitial progenitor cells expressed nestin and NG2 but not PAX7. These cells presented clonogenic and myogenic potential both in vitro and in vivo. CD146+ cells fused also with myoblasts in co-cultures in vitro. However, they were not able to differentiate to chondro- or adipocytes in vitro. Moreover, CD146+ cells followed myogenic differentiation in vivo after heterotopic transplantation. CONCLUSION: Mouse CD146+ cells represent the population of mouse muscle interstitial progenitors that differ from satellite cell-derived myoblasts and have clonogenic and myogenic properties.


Assuntos
Antígeno CD146 , Desenvolvimento Muscular , Mioblastos , Células Satélites de Músculo Esquelético , Animais , Antígeno CD146/genética , Diferenciação Celular , Células Cultivadas , Masculino , Camundongos , Fibras Musculares Esqueléticas , Músculo Esquelético , Células-Tronco
10.
Cells ; 9(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466405

RESUMO

Heterotopic ossification (HO) manifests as bone development in the skeletal muscles and surrounding soft tissues. It can be caused by injury, surgery, or may have a genetic background. In each case, its development might differ, and depending on the age, sex, and patient's conditions, it could lead to a more or a less severe outcome. In the case of the injury or surgery provoked ossification development, it could be, to some extent, prevented by treatments. As far as genetic disorders are concerned, such prevention approaches are highly limited. Many lines of evidence point to the inflammatory process and abnormalities in the bone morphogenetic factor signaling pathway as the molecular and cellular backgrounds for HO development. However, the clear targets allowing the design of treatments preventing or lowering HO have not been identified yet. In this review, we summarize current knowledge on HO types, its symptoms, and possible ways of prevention and treatment. We also describe the molecules and cells in which abnormal function could lead to HO development. We emphasize the studies involving animal models of HO as being of great importance for understanding and future designing of the tools to counteract this pathology.


Assuntos
Músculo Esquelético/patologia , Ossificação Heterotópica/patologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Ossificação Heterotópica/diagnóstico , Ossificação Heterotópica/terapia , Osteogênese , Transdução de Sinais
11.
Semin Cell Dev Biol ; 104: 93-104, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32005567

RESUMO

The proper functioning of tissues and organs depends on their ability to self-renew and repair. Some of the tissues, like epithelia, renew almost constantly while in the others this process is induced by injury or diseases. The stem or progenitor cells responsible for tissue homeostasis have been identified in many organs. Some of them, such as hematopoietic or intestinal epithelium stem cells, are multipotent and can differentiate into various cell types. Others are unipotent. The skeletal muscle tissue does not self-renew spontaneously, however, it presents unique ability to regenerate in response to the injury or disease. Its repair almost exclusively relies on unipotent satellite cells. However, multiple lines of evidence document that some progenitor cells present in the muscle can be supportive for skeletal muscle regeneration. Here, we summarize the current knowledge on the complicated landscape of stem and progenitor cells that exist in skeletal muscle and support its regeneration. We compare the cells from two model organisms, i.e., mouse and human, documenting their similarities and differences and indicating methods to test their ability to undergo myogenic differentiation.


Assuntos
Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Humanos , Camundongos , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/metabolismo
12.
Stem Cell Res Ther ; 10(1): 343, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753006

RESUMO

BACKGROUND: Satellite cells, a population of unipotent stem cells attached to muscle fibers, determine the excellent regenerative capability of injured skeletal muscles. Myogenic potential is also exhibited by other cell populations, which exist in the skeletal muscles or come from other niches. Mesenchymal stromal/stem cells inhabiting the bone marrow do not spontaneously differentiate into muscle cells, but there is some evidence that they are capable to follow the myogenic program and/or fuse with myoblasts. METHODS: In the present study we analyzed whether IGF-1, IL-4, IL-6, and SDF-1 could impact human and porcine bone marrow-derived mesenchymal stromal/stem cells (hBM-MSCs and pBM-MSCs) and induce expression of myogenic regulatory factors, skeletal muscle-specific structural, and adhesion proteins. Moreover, we investigated whether these factors could induce both types of BM-MSCs to fuse with myoblasts. IGF-1, IL-4, IL-6, and SDF-1 were selected on the basis of their role in embryonic myogenesis as well as skeletal muscle regeneration. RESULTS: We found that hBM-MSCs and pBM-MSCs cultured in vitro in the presence of IGF-1, IL-4, IL-6, or SDF-1 did not upregulate myogenic regulatory factors. Consequently, we confirmed the lack of their naïve myogenic potential. However, we noticed that IL-4 and IL-6 impacted proliferation and IL-4, IL-6, and SDF-1 improved migration of hBM-MSCs. IL-4 treatment resulted in the significant increase in the level of mRNA encoding CD9, NCAM, VCAM, and m-cadherin, i.e., proteins engaged in cell fusion during myotube formation. Additionally, the CD9 expression level was also driven by IGF-1 treatment. Furthermore, the pre-treatment of hBM-MSCs either with IGF-1, IL-4, or SDF-1 and treatment of pBM-MSCs either with IGF-1 or IL-4 increased the efficacy of hybrid myotube formation between these cells and C2C12 myoblasts. CONCLUSIONS: To conclude, our study revealed that treatment with IGF-1, IL-4, IL-6, or SDF-1 affects BM-MSC interaction with myoblasts; however, it does not directly promote myogenic differentiation of these cells.


Assuntos
Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/metabolismo , Regeneração , Animais , Células da Medula Óssea/citologia , Fusão Celular , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Suínos
13.
Stem Cells Dev ; 28(16): 1059-1077, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31170887

RESUMO

Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.


Assuntos
Músculos/fisiopatologia , Escoliose/fisiopatologia , Células-Tronco/fisiologia , Adolescente , Animais , Humanos , Medicina Regenerativa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...